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Abstract. The problem of identifying the coincidence
site lattices produced by the disorientations of any rational
lattice is investigated. A very simple new procedure for
computing the CSLs is presented, based on Grimmer’s re-
ciprocity theorem and application of the reduction algo-
rithm introduced by Buerger for finding reduced cells. The
point symmetries of a lattice imply that any orientation
relationship that produces a CSL can be alternatively ex-
pressed by a variety of different rotations. Two simple nu-
merical methods (one based on integral matrix operations
and one based on quaternions) are demonstrated for find-
ing all the equivalent rotations that produce the same CSL
and for obtaining a single ‘canonical’ rotation as a repre-
sentative of an equivalence class.

1. Introduction

The concept of a coincidence-site lattice arose from the
need to understand the structure of grain boundaries in
polycrystalline materials. Those boundaries are energeti-
cally preferred for which there is a ‘good fit’ between the
structures to either side. A ‘good fit’ corresponds to a
high density of atomic positions that belong to both stuc-
tures. In reality, of course, some small adjustments of
atomic positions at the boundary and close to it are to be
expected and real grain boundaries are not strictly two-
dimensional. This more realistic picture requires an exten-
sion of the coincidence-site concept to take near-coinci-
dences into account; and is dealt with in the theory of
‘secondary dislocations’ and Bollmann’s O-lattice theory
(Bollmann, 1970, 1977; Iwasaki, 1976). The coincidence-
site lattice approach ignores this complication, and repre-
sents a crystalline structure simply by its Bravais lattice.
In this approach two superimposed lattices are considered
(usually two congruent lattices in a specific relative orien-
tation) and those relative orientations of the two lattices
are sought that produce a high density of points common
to both. When coincidence points exist, they constitute a
lattice –– the coincidence-site lattice or CSL. A grain

boundary is then represented as a two-dimensional section
of the CSL.

A major step in the mathematical theory of CSLs was
provided by the formulae proposed by Ranganathan
(1966) for a cubic lattice and a congruent lattice related to
it by a rotation through an angle q about a crystallo-
graphic axis (h1 h2 h3). A CSL exists whenever

tan
q

2

� �
¼ Ys

X
;

where X and Y are mutually prime integers and

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh1

2 þ h2
2 þ h3

2Þ
p

:

The density of the CSL (relative to that of the given cubic
lattice) is 1/S, where

mS ¼ X2 þ s2Y2 ;

in which m is 1 if X2 þ s2Y2 is odd and is equal to 2 or 4
according as 2 or 4 is the even factor of X2 þ s2Y2.

The Ranganathan formulae are valid for fcc and bcc as
well as for a primitive cubic lattice.

The literature on the mathematical theory of CSLs has
become extensive. We can mention just a few of the key
developments. Grimmer (1973) developed a matrix ap-
proach to the particular case of CSLs for cubic lattices.
Grimmer, Bollmann and Warrington (1974) computed and
tabulated all CSLs obtained from a cubic lattice and a ra-
tional rotation, for values of S up to 49. Two rotations are
equivalent in this context if they describe the same relative
orientation of two lattices. Equivalence classes of rational
rotations correspond to equivalence classes of integral qua-
ternions (Grimmer, 1974a). The elegant quaternion ap-
proach is implicit in Grimmer’s earlier work (Grimmer,
1973) and in Mykura’s extension of the list of all possible
CSLs for a cubic lattice to S ¼ 101 (Mykura 1979). Zei-
ner (2005) has developed a quaternion approach to the
problem of identifying the Bravais classes to which CSLs
arising from cubic lattices belong and has presented the
the results, up to S ¼ 59, and in a recent paper has dealt
with the CSLs of four-dimensional hypercubic lattices
(Zeiner 2006). The quaternion approach can be applied
also in the case of non-cubic lattices (Grimmer, 1980;
Heinz, Neumann, 1991). The rhombohedral case exhibits
some special features (Grimmer, 1989 a, b). A comprehen-
sive unified treatment of the CSL theory for cubic lattices
has been given recently (Reed et al., 2005). The matrix
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formulation of the CSL problem in its greatest generality
(in n-dimensions, for pairs of lattices that are not necessa-
rily congruent) was presented by Santoro and Mighell
(1973) and by Fortes (1983). Coincidence sites for quasi-
lattices have also received attention –– for planar quasilat-
tices with N-fold symmetry (Pleasants et al., 1996) and for
the icosahedral case (Warrington, Lück, 1996; Baake
1997). The icosahedral case is related to the CSLs for a
cubic lattice in six dimensions. A significant feature of
these investigations was the derivation of the number of
orientations that give rise to coincidences for each value
of the CSL density, expressed by successive terms in the
series expansion of a generating function. Grain bound-
aries between quasicrystals and periodic structures have
also been considered (Proult et al., 1996; Ranganathan
et al., 2000)

Janner’s investigation (Janner, 2004a) of the statistical
distribution of c=a ratios in hexagonal and tetragonal crys-
tals has shown that far more lattices of real crystals are
rational or near-rational, than would be expected by
chance. The reason for this is unknown. This discovery
suggests that theoretical investigations of properties of ra-
tional lattices may turn out to be relevant to understanding
real materials, rather than being just an interesting aca-
demic exercise. The discovery was followed by Janner’s
development of a mathematical theory of sublattices of ra-
tional lattices and equivalence classes of rational lattices
(Janner, 2004b).

In Section 2 a concise matrix formulation of the CSL
problem is presented, that leads, in Section 3, to a very
brief proof of Grimmer’s reciprocity theorem –– much sim-
pler than previous proofs. The Ranganathan formulae are
then shown to have a much greater generality than their
origin in the context of cubic lattices. Subsequent sections
demonstrate our method of finding CSLs. The method is
completely general: it is applicable to any rational lattice in
any number of dimensions. The idea is to exploit the fact
that a displacement shift lattice (DSL) is given, by defini-
tion, in terms of a linearly-dependent set of lattice transla-
tions. We shall demonstrate how Buerger’s algorithm for
finding reduced cells can be applied to the problem of re-
moving this redundancy. Having obtained a linearly-inde-
pendent set of base vectors for a DSL, the corresponding
CSL for the reciprocal lattices follows immediately from
Grimmer’s reciprocity theorem. Finally, simple matrix and
quaternion methods for obtaining a unique representative
rotation to characterise a disorientation is demonstrated by
presenting a specific numerical example.

2. Notation and definitions

Let {ei, i ¼ 1, . . . m} be a set of vectors in Euclidean
n-dimensional space En. The set of all points with position
vectors of the form

r ¼ e1u1 þ e2u2 þ . . . emum ; ð2:1Þ

where the ui are integers, is a point lattice L in En pro-
vided there is a non-zero minimal distance between any
two distinct points of the set. A translation lattice is also

defined by (2.1), with the vectors r interpreted as transla-
tions rather than position vectors. The lattices we shall be
dealing with may be regarded either as point lattices or
translation lattices; it makes no difference to the algebraic
expressions. For definiteness we employ the language of
point lattices. The vectors ei are the base vectors. The set
of base vectors may be redundant, that is, the base vectors
may be linearly dependent, in which case m > n. We shall
encounter this kind of redundancy in dealing with dis-
placement shift lattices. The set of integers [u1; u2; . . . ; um]
is a generalisation of the zone axis symbol of crystallo-
graphy.

Equation (2.1) can be written as

r ¼ Eu ; ðu 2 ZmÞ ð2:2Þ

where E denotes the row of vectors (e1, e2, . . .em) and u
denotes the m integers ui, written as a column.

If the vectors ei are specified by their components in a
Cartesian reference system, then the Cartesian components
of the position vectors r of the points of L are given by
(2.2), with E now interpeted as an n� m matrix whose
columns are the Cartesian components of the vectors ei. E
is a generating matrix (or, simply, a generator) for the
lattice L. If the rank of E is p then L lies in a p-dimen-
sional subspace Ep of En. The generator of a given lattice
is not unique: if E is a generator for L then so is EQ
where Q is any unimodular matrix of integers. (In particu-
lar, the lattice is unaffected by the order of the columns of
the matrix E that generates it and by arbitrary changes of
overall sign of any column.)

The columns of a non-singular generating matrix E are
the vectors giving the translations that define a primitive
unit cell of the lattice.

Denoting the transpose of a matrix by a superscript T,
the symmetric matrix

M ¼ ETE ð2:3Þ

is the metric matrix (or, for brevity, simply the metric)
associated with the generator E. Its elements are the scalar
products of the translation vectors given by the columns of
E. M is invariant under rotations E ! RE (RRT ¼ I) of L
but dependent on the choice of generating matrix; a
change E! EQ induces

M ! QTMQ : ð2:4Þ

A lattice is rational if its metric M is a rational matrix (a
matrix of rational numbers), and is an integral lattice if M
is an integral matrix (a matrix of integers). In what fol-
lows we shall deal only with integral lattices. This in-
volves no loss of generality because, of course, integral
lattices and rational lattices (or rational lattices scaled with
an irrational factor) differ simply by a scale factor.

The reciprocal lattice L* of a lattice L can be defined
as the set of all points in the subspace to which L be-
longs, whose position vectors r* satisfy

r* � r 2 Z for all r 2 L : ð2:5Þ
Proof: Let {ei, i ¼ 1, . . . , n} be a linearly independent

set of base vectors for L. Then L is given by

r ¼ Eu ; ðu 2 ZnÞ
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with a non-singular n� n generator E. Equation (2.5) then
states that r*Eu 2 Z for all u 2 Zn and, in particular,
h ¼ r*E 2 Zn. Therefore, r* has the form

r* ¼ hE�1 ; h 2 Zn ; ð2:6Þ

which can be rewritten as

r* ¼ h1e*1 þ h2e*2 . . .hne*n

with the Cartesian components of the vectors e*i given by
the rows of E––1. Since E––1E ¼ I, it follows that the base
vectors ei for L and the base vectors e*i for L* satisfy

ei* � ei ¼ di
j .

Therefore L*, defined by (2.5) is the lattice reciprocal
to L, as usually defined.

Since any matrix equation and its transpose convey the
same information Eq. (2.6) can be written in the alterna-
tive form

r* ¼ E––ThT, h 2 Zn , ð2:7Þ
in which r* and hT are now interpreted as columns. (We
use superscript T to denote matrix transpose, and �T to
denote a transposed inverse of a matrix). Comparing this
with (2.2) allows us to state that, if a lattice L is gener-
ated by a non-singular generator E, then its reciprocal lat-
tice L* is generated by E––T. This change of viewpoint
allows us to treat vectors and reciprocal vectors on the
same footing. This is expedient in later sections, where we
are dealing with the relationship between a CSL and a
DSL and all lattice vectors are are treated as columns of
Cartesian components

If E generates L, the sublattices of L are generated by
matrices of the form EQ, where Q is an integral m� m
matrix. The density of the sublattice (ratio of the volume
of the unit cell of L to that of the sublattice) is the abso-
lute value of 1=jQj. If two lattices L1 and L2 occupy the
same space, the set of all points contained in both (if any
exist) constitute a lattice, the coincidence-site lattice
(CSL) of L1 and L2. It is the lattice of greatest density
contained in L1 and L2. The dual of this concept is the
displacement-shift lattice (DSL), the lattice of least density
that contains L1 and L2.

Note that, for the CSL and DSL of L1 and L2 to exist
as ‘true’ lattices in En (generated by n linearly indepen-
dent vectors), a necessary and sufficient condition is that
L1 and L2, generated respectively by the non-singular ma-
trices E and F, be commensurate in the sense that a set of
base vectors for each should be a rational linear combina-
tion of the base vectors of the other. That is, E––1F should
be rational.

3. Grimmer’s theorem

A result of fundamental importance in the theory of coin-
cidence sites, given by Grimmer (1974b), is:

The CSL of two lattices is the reciprocal of the DSL of
their reciprocals.

Various proofs have appeared in the literature. The fol-
lowing proof is presumably the simplest. Let E and F be

non-singular generating matrices for two lattices in En.
Denote the CSL by G and the DSL of the reciprocals by
D. Then, by definition,

G ¼ {r : r ¼ Eu ¼ Fv, u 2 Zn, v 2 Zn} ,

D ¼ {r* : r* ¼ hE––1 þ kF�1, h 2 Zn, k 2 Zn} .

Therefore, for any r 2 G and any r* 2 D,

r* � r ¼ (hE––1 þ kF––1) r ¼ hE––1r þ kF––1r

¼ hE––1Eu þ kF––1Fv ¼ hu þ kv 2 Z ,

i.e., G ¼ D*.

4. Reorientation of an integral lattice

A rotation in E3 about the origin can be expressed as
r! Rr, where R is an orthogonal matrix (RRT ¼ I). For a
rotation through an angle q about an axis in the direction
specified by a unit vector n this matrix takes the form

R ¼ eqN ¼ I þ qN þ q2N2/(2!) þ q3N3/(3!) þ . . . , ð4:1Þ

N ¼
0 �n3 n2

n3 0 �n1

�n2 n1 0

0
@

1
A

where n1, n2 and n3 are the Cartesian components of n.
Because N3 ¼ �N,

R ¼ I þ N sin qþ N2ð1� cos qÞ : ð4:2Þ
We shall be concerned with the CSL of an integral lattice
L in E3 generated by a nonsingular matrix E, and a reor-
ientation of it, generated by RE. Recalling (2.7) and the
remarks following it, we see that the DSL of the recipro-
cal lattices is generated by the 3� 6 matrix

[E�T, RE�T] ¼ E�T[I, ETRE�T] . ð4:3Þ
If R is taken to be a rotation through angle q about an
axis indexed by (h1 h2 h3) (indices referred to the primi-
tive unit cell given by E) then, denoting the index set
(h1 h2 h3) (a row of integers) by the symbol h, the unit
vector n along this axis is given by

n ¼ hE�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hM�1hT
p ¼ jEj hE�1

s
; s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hMAhT
p

: ð4:4Þ

MA denotes the matrix adjoint to M,

MA ¼ jMj M�1 : ð4:5Þ

Note that if M is an integral matrix, then so is MA; s2 is
therefore an integer. In order to obtain the form of (4.3)
explicitly in terms of (h1 h2 h3) and q, we need to investi-
gate the form of ETNE�T. In terms of matrix components,

Nij ¼ �eijknk ¼ �eijkha(E�1)a
k jEj/s .

eijk is the alternating symbol, equal to þ1 or �1 when ijk
is an even or an odd permutation, respectively, of 123.
Otherwise, it is zero. We have also made use here of the
summation convention: if a subscript or superscript ap-
pears twice in an expression, a summation over all its va-
lues is implied.
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Now,

�eijk(E�1)b
i (E�1)g

j (E�1)a
k ¼ �eabgjE�1j

(an identity expressing the definition of a determinant),
from which it follows that

�eijk(E�1)a
k jEj ¼ �eabgEibEjg .

Therefore,

Nij ¼ �haeabgEibEjg/s .

If we define a matrix H,

Hbg ¼ �haeabg ,

i:e:; H ¼
0 �h3 h2

h3 0 �h1

�h2 h1 0

0
@

1
A ; ð4:6Þ

then

Nij ¼ H bgEibEjg/s ,

i.e., N ¼ EHET/s

and, finally,

ETNE�T ¼ MH

s
: ð4:7Þ

Substituting this into the expression (4.2) for a rotation,

ETRE�T ¼ I þ sin q

s
MH þ ð1� cos qÞ ðMHÞ2

s2
: ð4:8Þ

Recalling the note on commensurability at the end of Sec-
tion 2, we can conclude that a ‘true’ DSL and CSL will
arise if and only if this matrix is rational. Noting that s2 is
an integer and that H is a matrix of integers, we see that
ETRE�T will be rational if and only if (sin q)/s and cos q
are rational, or, in other words, if and only if tan (q/2)/s is
rational. We therefore can write

tan ðq=2Þ ¼ Ys

X
ð4:9Þ

where X and Y are mutually prime integers. Then

sin q

s
¼ 2XY

mS
and

ð1� cos qÞ
s2

¼ 2Y2

mS
;

mS = X2 þ s2Y2. ð4:10Þ
(m is an integer, still to be chosen). Observe that (4.9) and
(4.10) are homologous to the Ranganathan formulae for
cubic lattices. The difference lies in the form of the quad-
ratic expression s2.

We now have

ETRE�T ¼ I þ 2Y

mS
ðXMH þ YðMHÞ2Þ : ð4:11Þ

If m is now chosen to be the greatest common factor of
X2 þ s2Y2 and all the elements of the integral matrix
2YðXMH þ YðMHÞ2, the 3� 6 matrix (4.3) that generates
the DSL can be written in the form

E�T

S
½SI;W � ; ð4:12Þ

in which

W ¼ S(ETRE�T � I) ¼ 2YðXMH þ YðMHÞ2Þ=m ð4:13Þ
is an integral matrix.

To find the CSL, it is necessary to deduce a non-singu-
lar 3� 3 generating matrix L for the DSL by eliminating
the redundancy of the set of translations given by the col-
umns of (4.12); the CSL is then generated by L�T.

5. The reduction algorithm

Let M be the metric for a lattice in En and let Mab be the
off-diagonal element with greatest absolute value such that

2jMabj > Maa , Maa � Mbb . ð5:1Þ
Changing the a-th column (ea) of E according to

ea ! ea –– meb , ð5:2Þ
where m is the sign of Mab, reduces the length of the vec-
tor ea. If, after this step, the column ea is null it is to be
eliminated from E. Iteration of these instructions will, in
general, terminate when E has become an n� n nonsingu-
lar matrix whose columns are n of the shortest translations
of L, and all elements of the corresponding metric matrix
M satisfy

2jMabj � Maa , 2jMabj � Mbb . ð5:3Þ
The phrase ‘in general’ refers to the fact that there exist
exceptional cases where the iterative procedure has pro-
duced a metric satisfying (5.3) –– so that the iterative pro-
cess has terminated –– but the matrix E has not been con-
verted to a square matrix. A very simple example of this
situation is

E ¼
1 �1 �1 1

�1 1 �1 1

�1 �1 1 1

0
B@

1
CA ;

M ¼

3 �1 �1 �1

�1 3 �1 �1

�1 �1 3 �1

�1 �1 �1 3

2
66664

3
77775

(body-centered cubic in E3). In these circumstances the
process of finding a non-singular generating matrix E can
be readily completed by finding the relationship of linear
dependence of its columns and eliminating a redundant
column. A different kind of anomaly occurs when the al-
gorithm terminates, but the columns of E are not the three
shortest translations. A simple example is a rhombohedral
lattice,

E ¼
2 �1 �1

0
ffiffiffi
3
p

�
ffiffiffi
3
p

l l l

0
BB@

1
CCA ;

M ¼
4þ l2 l2 � 2 l2 � 2

l2 � 2 4þ l2 l2 � 2

l2 � 2 l2 � 2 4þ l2

2
664

3
775 ;
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for which l ¼ 2(c=a)=
ffiffiffi
3
p

< 1=
ffiffiffi
2
p

. Then M is already in
reduced form (it satisfies (5.3)) but the columns of E are not
the three shortest translations; e1 þ e2 þ e3 is shorter. Ob-
serve, however, that in this case the unit cell corresponding
to E is the primitive rhombohedral cell, which possesses the
threefold symmetry of the lattice, and is thus ‘more appro-
priate’ than one based on the three shortest translations.

The idea of introducing a standard primitive unit cell
for every lattice in E3, based on the three shortest lattice
translations, is due to Niggli (1928), who employed the
theory of the classification of quadratic forms to obtain a
unique form for the metric matrix for any three-dimen-
sional lattice. There are 44 types, so this is a more refined
classification than the Bravais classification. Niggli’s clas-
sification is more readily accessible in Mighell and Rod-
gers (1980). The algorithm given above is the essence of
the method given by Buerger (1957) for finding a ‘re-
duced’ cell (a primitive unit cell based on the three short-
est lattice translations) for any lattice in E3 from a given
arbitrary unit cell. The end result, a Buerger cell for the
given lattice, is not unique –– some lattices can have as
many as five inequivalent Buerger cells (Gruber, 1973).
The problem posed by this lack of uniqueness is that of
finding a standard unique metric for any lattice in E3

(Santoro, Mighell, 1970; Krı́vý, Gruber, 1976; Gruber,
1992; Zuo et al., 1995). Simply stated, it is the problem of
finding the transformation (2.4) that will convert any non-
singular symmetric 3� 3 matrix M to one of Niggli’s ca-
nonical metrics. However, in the present context this need
not concern us. We can simply employ the iterative proce-
dure to obtain a nonsingular matrix L with a metric satis-
fying (5.3), starting from a rectangular matrix of the form
(4.3). The matrix L�T then generates the required CSL.
The problem of the stability of the algorithm (Grosse-
Kunstleve at al., 2004) does not arise in the present con-
text since only integer arithmetic is involved.

The reduction algorithm can be applied directly to the
matrix M, without involving E. The step (5.2) can be car-
ried out as two-stage process:

Mag ! Mag –– mMbg

for the a-th row, followed by

Mga ! Mga � mMgb

for the a-th column. The a-th row and column are then to
be removed if they are null. Having arrived at the final M
satisfying (5.3) the corresponding reduced E can be ob-
tained in one step

E ! EQ ;

where Q is the integral matrix obtained as the product of
all the matrices q that express the changes M! qTMq un-
dergone by M at each step.

6. An example

We illustrate the technique by applying the reduction algo-
rithm to a simple rational lattice. We choose Frank’s ‘cu-
bic hexagonal’ lattice (Frank, 1965), which is a curious

case of some intrinsic interest (Ranganathan et al., 2002).
The operation of the algorithm is in fact so simple and
straightforward that it can be carried out quite quickly by
pencil and paper calculation. The ‘cubic hexagonal’ lattice
is a hexagonal lattice with a c=a ratio of

ffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þ

p
. The

generator and metric can be taken to be

E ¼

ffiffiffi
2
p

�1=
ffiffiffi
2
p

0

0
ffiffiffiffiffiffi
3=2

p
0

0 0
ffiffiffi
3
p

0
BB@

1
CCA ;

M ¼
2 �1 0
�1 2 0

0 0 3

2
4

3
5 ; MA ¼ 3

2 1 0
1 2 0
0 0 1

2
4

3
5 :

(We have employed a scaling factor so that M is an inte-
gral matrix rather than simply rational). As an (arbitrarily
chosen) example, consider h ¼ ð0 1 1Þ, X ¼ 3, Y ¼ 1. This
gives s2 ¼ hMAh ¼ 9, q ¼ 2 tan�1 (1) ¼ 90�, mS ¼ 18.

2YðXMH þ YðMHÞ2Þ ¼ 6
�4 �2 2

3 0 0
�2 2 �2

0
@

1
A

so m ¼ 6, S ¼ 3 and the generator (4.12) for the DSL can
be replaced by (1=3) E�T[3I, W], which is

E�T

3

3 0 0 �4 �2 2
0 3 0 3 0 0
0 0 3 �2 2 �2

0
@

1
A :

The components in the last three columns can be im-
mediately reduced modulo 3 by additions and subtractions
of the first three columns. Also note that the fifth and
sixth columns differ only by a sign, and so one of them
can be eliminated. The algorithm terminates at

L ¼ E�T

3

2 0 1
0 3 0
1 0 �1

0
@

1
A :

The CSL is therefore generated by L�T ¼ EQ,

Q ¼
1 0 1
0 1 0
1 0 �2

0
@

1
A :

The determinant of Q is �3, so the density of the CSL
is 1=3.

(Note that there are many integral matrices Q that de-
scribe in this way the same CSL; they are related to each
other by multiplication on the right or the left by any inte-
gral matrix with determinant �1.)

The metric of the CSL is

QTMQ ¼
5 �1 �4
�1 2 �1
�4 �1 14

2
4

3
5 :

This does not satisfy (5.3) so the algorithm can be ap-
plied to reduce it to a more recognisable form. The result is

5 �1 0
�1 2 0

0 0 9

2
4

3
5 ;

showing that the CSL is primitive monoclinic.
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7. Centred cells

In the method suggested above for finding CSLs the in-
dices h ¼ (h1 h2 h30) of the rotation axis n are defined
with reference to a primitive unit cell. For lattices of types
I, F or S this is not the accepted way of indexing an axis.
Thus, if the axis is given by its index triple k referred to a
centred cell, a conversion must be made to obtain the tri-
ple h needed as input for the algorithm. Let E be the gi-
ven nonsingular generator for a lattice L and let G be the
matrix whose columns are the translations along the edges
of a centred cell. Then

n � hE�1 � kG�1 ;

so that

h � kG�1E ; k ¼ hE�1G :

We employ the symbol � to denotes equality to within a
scalar factor. The vector n is to be normalised to a unit
vector and h or k to a triplet of mutually prime integers).
Thus, conversion of the usual indexing in terms of
centred cell to the indices h required in the present con-
text is achieved with the aid of the matrix G�1E. The
following forms may be adopted (the matrix E has been
chosen in each case in a convenient form. It should be
noted that the corresponding choice of primitive cell here
is not in general a Buerger cell). These particular forms
for the generating matrices E and G of the Bravais lat-
tices will be adopted as canonical in subsequent sections
of this paper.

E ¼
a �a �a
�b b �b
�c �c c

0
@

1
A ; G ¼

2a
2b

2c

0
@

1
A ;

G�1E ¼ 1=2

1 �1 �1
�1 1 �1
�1 �1 1

0
@

1
A ;

E�1G ¼ �
0 1 1
1 0 1
1 1 0

0
@

1
A

for body-centred (cubic, tetragonal or orthorhombic);

E ¼
0 a a
b 0 b
c c 0

0
@

1
A ; G ¼

2a
2b

2c

0
@

1
A ;

G�1E ¼ 1=2

0 1 1
1 0 1
1 1 0

0
@

1
A ;

E�1G ¼
�1 1 1

1 �1 1
1 1 �1

0
@

1
A

for face-centred (cubic or orthorhombic);

E ¼
a �a 0
b b d
0 0 2c

0
@

1
A ; G ¼

2a
2b d

2c

0
@

1
A ;

G�1E ¼ 1=2

1 �1 0
1 1 0
0 0 2

0
@

1
A ; E�1G ¼

1 1 0
�1 1 0

0 0 1

0
@

1
A

for base-centred (orthorhombic or monoclinic).
A similar consideration applies a to a rhombohedral lat-

tice, where the need is to convert an index set k referred to
a hexagonal system to an index set h referred to a primitive
rhombohedral cell. Taking the base vectors of the two re-
ference systems in the relationship indicated in Fig. 1,

E ¼
0 �a=2 a=2

a=
ffiffiffi
3
p

�a=2
ffiffiffi
3
p

�a=2
ffiffiffi
3
p

c=3 c=3 c=3

0
BB@

1
CCA ;

G ¼
a �a=2 0

0 a
ffiffiffi
3
p

=2 0

0 0 c

0
B@

1
CA ;

G�1E ¼ 1=3

1 �2 1
2 �1 �1
1 1 1

0
@

1
A ;

E�1G ¼
0 1 1
�1 0 1

1 �1 1

0
@

1
A :

8. Planar integral lattices

The simpler cases of CSLs for rational lattices in the Eucli-
dean plane E2 is not without interest. They have the advan-
tage for illustrative purposes that the geometrical situation
underlying the algebra is more readily visualised. The pla-
nar cases can of course be approached as special cases of
the three dimensional case. Consider for example a hexa-
gonal lattice in E3 and rotate it about its sixfold axis (cho-
sen along the z-axis). Then we can conveniently omit the
third row and column from the matrices and write

E ¼ 1ffiffiffi
2
p

2 �1

0
ffiffiffi
3
p

 !
; H ¼ 0 �1

1 0

� �
;

M ¼ 2 �1
�1 2

� �
The adjoint MA is to be replaced by the single integer

jMj ¼ 3 ¼ s2. Take, for example, X ¼ 9, Y ¼ 1, so that
tan (q=2) ¼ 1=3

ffiffiffi
3
p

and mS ¼ 84. The generator (4.3) for
the DSL is in this case

E�T

7
7 0 �2 �3
0 7 3 1

� �
! E�T

7
3 1
�1 2

� �
¼ L
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Fig. 1. Relationship between the base vectors of the rhombohedral
reference system (E) and those of the hexagonal system (G), for a
rhombohedral lattice. (Viewed along g3)



so the CSL is generated by L�T ¼ EQ with

Q ¼ 2 1
�1 3

� �
:

The determinant of Q is 7 so the density of the CSL is
1=7. The metric of the CSL is QTMQ ¼ 7M; the CSL is an
enlarged and rotated version of the original lattice –– as
are all CSLs of a planar hexagonal lattice. The geometri-
cal situation is illustrated in Fig. 2.

As a second simple example, consider the plane rectan-
gular lattice with

E ¼
ffiffiffi
2
p ffiffiffi

3
p

 !
; M ¼ 2

3

� �
; s2 ¼ jMj ¼ 6 :

Then H ¼ �1
1

� �
(as for all planar cases) gives

MH ¼ �2
3

� �
; ðMHÞ2 ¼ �6

1
1

� �
:

For the case X ¼ Y ¼ 1 we then get tan (q=2) ¼
ffiffiffi
6
p

,
mS ¼ 7, and the DSL is generated by

E�T

7
7 0 �12 �4
0 7 6 �12

� �

! E�T

7
7 0 2 �4
0 7 �1 2

� �
! E�T

7
2 1
�1 3

� �
;

from which it follows that the CSL is generated by EQ,

Q ¼ 3 1
�1 2

� �
:

The metric for the CSL is

QTMQ ¼ 7
3

2

� �
¼ 21

14

� �
:

The geometrical situation is illustrated in Fig. 3.

9. Grain boundary lattices

According to coincidence-site lattice theory the structure
of a planar portion of a grain boundary is represented by a
section of a CSL. Hence a prescription is needed for find-
ing the two-dimensional section of a given CSL in a plane
normal to a given direction.

Lemma: The two-dimensional sublattice of a lattice L
in an (h1 h2 h3) plane is generated by EH. (Proof: An
(h1 h2 h3) plane is normal to the vector r* ¼ hE�1. All the
points r ¼ Eu of L that lie on the (h1 h2 h3) plane through
the origin satisfy r* � r ¼ hu ¼ 0. The integral solutions u
of this equation are given by Hv, for any integral v. The
sublattice of L in the plane h consists of all points r of
the form r ¼ EHv.)

Consider a lattice L and a sublattice of L (e.g., CSL)
generated, respectively, by nonsingular E and L�T ¼ EQ,
where Q is an integral matrix. Let h0 be an index set for a
lattice plane of L. The vector perpendicular to the plane is
r* ¼ h0E�1. With reference to the sublattice the index set
for the same plane is k ¼ r*L�T ¼ h0Q. From the above
lemma it then follows that the planar lattice of the sublat-
tice generated by L�T that lies in a plane h0 is generated
by

EQK ; K ¼
0 �k3 k2

k3 0 �k1

�k2 k1 0

0
@

1
A ; k ¼ h0Q :

ð9:1Þ

As an illustrative example, take again the CSL of the
cubic hexagonal lattice given by h ¼ ð0 1 1Þ, X ¼ 3,
Y ¼ 1, that we obtained in section 6:

Q ¼
1 0 1
0 1 0
1 0 �2

0
@

1
A :

Suppose we wish to find the two-dimensional lattice of
coincidence sites in a (2 1 0) plane (the grain boundary).
Thus, h0 ¼ (2 1 0), k ¼ (2 1 2),

Coincidence sites for rational lattices 711

Fig. 2. A CSL with S ¼ 7 for a plane hexagonal lattice. The network
of triangles is the original hexagonal lattice. The black circles are
the coincidence sites that arise from rotation through angle
q ¼ 2 tan�1 (1/3

ffiffiffi
3
p

).

Fig. 3. A plane rectangular lattice generated by translations of length
ratio

ffiffiffi
2
p

:
ffiffiffi
3
p

, and the CSL with S ¼ 7 obtained by rotation through
q ¼ 2 tan�1 (

ffiffiffi
6
p

).



K ¼
0 �2 1
2 0 �2
�1 2 0

0
@

1
A ; QK ¼

�1 0 1
2 0 �2
2 �6 1

0
@

1
A ;

EQK ¼
�2

ffiffiffi
2
p

0 2
ffiffiffi
2
p

ffiffiffi
6
p

0 �
ffiffiffi
6
p

2
ffiffiffi
3
p

�6
ffiffiffi
3
p ffiffiffi

3
p

0
BB@

1
CCA :

The metric of this singular (rank 2) generating matrix is
26 �36 �8
�36 108 �18
�8 �18 17

2
4

3
5. The reduction algorithm converts

this to the more appropriate 2 � 2 metric of the grain
boundary lattice:

26 �8
�8 17

� �
:

10. Equivalence classes of rotations

In terms of a generating matrix E of a lattice L, a point
symmetry of L corresponds to an orthogonal matrix S for
which

SE ¼ EQ ð10:1Þ
for some unimodular matrix Q of integers. The integral
matrices corresponding in this way to symmetries of L
satisfy QTMQ ¼ M. The formula (10.1) can be interpreted
as a definition of a representation of the symmetry group
of the lattice in terms of integral matrices Q. It will be
convenient to refer to these representations as ‘Q-represen-
tations’.

The orientation relationship between two congruent lat-
tices is represented by an equivalence class of rotations, a
rotation R being equivalent to S0RS, where S and S0 are
orthogonal matrices associated with lattice symmetries.
Any rotation in the equivalence class of a given rotation R
can be expressed as SðS0RÞ S�1 where S and S0 are rota-
tions belonging to the symmetry group of L. Since
trace (R) ¼ 1 þ 2 cos q it follows that any two rotations R
and SRS�1 are rotations by the same angle q, about differ-
ent axes, and therefore that all the angles of the rotations
in the equivalence class of R are given by the subset of
rotations of the form S0R.

R and R�1 (rotation by q or by �q about the same
axis) are also equivalent, because to describe the orienta-
tion relation between two congruent lattices either of them
can be taken as the reference lattice. To find all rotations
of the equivalence class to which a given rotation R be-
longs, those rotations S0RS and S0R�1S with S and S0 be-
longing to the rotational subgroup of the symmetry group
of L need be computed. This ‘reduced’ equivalence class
may contain as many as 2g2 rotations, where g is the or-
der of the group of rotational symmetries of L. An im-
portant problem is the selection of a unique rotation as a
definitive representative of its equivalence class. The con-
vention usually adopted is to select the rotation with the
smallest rotation angle q and with axis n corresponding to
a point in a chosen fundamental region of the stereogram
associated with the point symmetry group of L (Grimmer,

1980; Heinz, Neumann, 1991). Clarification of this latter
concept is provided by Fig. 4, which illustrates the spheri-
cal space of unit vectors n. The points marked g1, g2, g3

correspond to the directions of the basis vectors g1, g2, g3,
which define the edges of the unit cell and whose Carte-
sian components are given by the columns of the matrices
G of Section 7 (for primitive lattices, G ¼ E). The criteria
for a vector n to lie in the chosen fundamental region are
given in terms of the components (k1 k2 k3) of n referred
to this basis: n � g1k1 þ g2k2 þ g3k3 ¼ Gk, so that

k � G�1n ¼ nG�T.

The criteria for n to lie in the chosen fundamental re-
gion are

Cubic: 0 � k2 � k1 , 0 � k3 � k1

Hexagonal: 0 � k2 � k1, 0 � k3

Rhombohedral: 0 � k1, 0 � k2, 0 � k3

Tetragonal: 0 � k1, 0 � k2, 0 � k3

Orthorhombic: 0 � k1, 0 � k3

Monoclinic: 0 � k3

10.1 Matrix method

Q-representations for the rotational symmetry groups of
the various Bravais lattices can be obtained as products of
the sets of integral matrices listed below. These particular
representations correspond to the choices of E employed
in Section 7. As a space-saving device, each 3� 3 matrix
is presented as a row of three number triples, each triple
represents a column of a matrix Q):

Cubic 432 (order 24):
P (010, �1100, 001), (001, 100, 010), (00�11, 0�110, �1100)
I (00�11, 111, 0�110), (001, 100, 010), (00�11, 0�110, �1100)
F (10�11, 100, 1�110), (001, 100, 010), (00�11, 0�110, �1100)
Hexagonal 622 (order 12)
(110, �1100, 001), (100, �11�110, 00�11)
Rhombohedral 322 (order 6)
(001, 100, 010), (0�110, �1100, 00�11)
Tetragonal 422 (order 8)
P (010, �1100, 001), (010, 100, 00�11)
I (00�11, 111, 0�110), (�1100, 0�110, 111)
Orthorhombic 222 (order 4)
P (�1100, 0�110, 001), (100, 0�110, 00�11)
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Fig. 4. Spherical representations of the fundamental regions (darker
grey) for the symmetry groups of Bravais lattices. First row: cubic,
hexagonal, rhombohedral. Second row: tetragonal, orthorhombic,
monoclinic.



I (010, 100, �11�11�11), (�11�11�11, 001, 010)
F (01�11, 10�11, 00�11), (�1100, �1101, �1110)
S (�1100, 0�110, 001), (0�110, �1100, 00�11)
Monoclinic 2 (order 2)
P (�1100, 010, 00�11)
S (010, 100, 00�11)
For completeness, we list the relations satisfied by the

generators (in the sense of Coxeter and Moser (1972) –– a
different usage, here, of the term ‘generator’), that serve to
define the group:

Cubic Q1
4 ¼ Q2

3 ¼ Q3
2 ¼ (Q2Q3)2 ¼ (Q3Q1)3

¼ (Q1Q2)4 ¼ I, Q3 ¼ Q1Q2Q1
2

Hexagonal Q1
6 ¼ Q2

2 ¼ (Q1Q2)2 ¼ I
Rhombohedral Q1

3 ¼ Q2
2 ¼ (Q1Q2)2 ¼ I

Tetragonal Q1
4 ¼ Q2

2 ¼ (Q1Q2)2 ¼ I
Orthorhombic Q1

2 ¼ Q2
2 ¼ (Q1Q2)2 ¼ I

Monoclinic Q1
2 ¼ I

In each case, the Q-representation of the whole group
consists of all possible products of the matrices we have
listed; for the cubic group 432 for example it follows from
the relations that these products can all be written in the
form Q3

gQ2
bQ1

a (a ¼ 0, 1, 2, 3; b ¼ 0, 1, 2; g ¼ 0, 1)
and analogous expressions for the other Bravais types: all
elements are given by Q2

mQ1
n (m ¼ 0, 1, n ¼ 0, . . . ; n� 1,

n ¼ 6, 3, 4, 2 for hexagonal, rhombohedral, tetragonal, or
orthorhombic, respectively).

Equivalence of CSL-producing rotations is now expres-
sible in terms of integral matrices W (4.13): Q0WQT and
Q0WTQT will lead to the same CSL, where Q and Q0 are
any matrices belonging to the Q-representation of the lat-
tice’s rotational symmetry group. Thus we have a means
of obtaining, from a given angle q and axis h for a CSL
of a rational lattice, all other {q, h} pairs that describe the
same orientation relation and, consequently, the same
CSL: for each case, employing (4.2) and (4.13).

R0 ¼ E�T(Q0WQT) ET � I , N sin q ¼ (R � RT)/2

(and similarly with W T replacing W) gives the correspond-
ing angle q and axis n. Then h � nE.

If the aim is to find the canonical rotation that is
equivalent to a given rotation R, then only g rotations,
rather than 2g2, need be computed to arrive at the desired
result. This we shall demonstrate in the following section
after introducing the quaternion representation of rotations.

10.2 Quaternion method

Rotations in three dimensions are very elegantly and con-
veniently represented by quaternions. (Hamilton, 1844;
Tait, 1890; du Val, 1964; Altmann, 1966, Conway, Smith,
1992; etc.). The application of quaternions to the descrip-
tion of reorientations of a cubic lattice and the associated
equivalence classes of rotations was introduced by Grim-
mer (1974a) and extended to other lattice types by Grim-
mer (1980) and Heinz and Neumann (1991).

The product of two quaternions p ¼ ðp0, pÞ and
q ¼ ðq0, qÞ is

pq ¼ ðp0q0 –– p � q, p�q þ p0q þ q0p) . ð10:2Þ

The conjugate of a quaternion q ¼ (q0, q) is �qq ¼ (q0,
�q). A quaternion q is unimodular if q�qq ¼ e where e de-
notes the unit quaternion (1 0 0 0). Equivalently, a unit
quaternion is one for which q0

2 þ q1
2 þ q2

2 þ q3
2 ¼ 1. A

rotation R through an angle q about an axis in the direc-
tion of a unit vector n can be represented by a unimodular
quaternion:

q ¼ (cos (q/2), n sin (q/2)) . ð10:3Þ

The angle and axis of the rotation are given by the
Rodrigues vector q/q0 ¼ n tan (q/2) (Rodriques, 1840; Alt-
mann, 1989; Heinz, Neumann, 1991). Products of rota-
tions correspond to products of their associated quater-
nions. For a rotation R that gives rise to a CSL of a
rational lattice (4.9) allows us to rewrite this as

q � ðX; sYnÞ : ð10:4Þ

The symbol � denotes the omission of a scalar factor;
for the purpose of evaluation of products of rotations sca-
lar factors are irrelevant and can be chosen arbitrarily.
This observation considerably simplifies computations and
also permits us to impose the restriction that the compon-
nent q0 of the quaternions be non-negative, corresponding
to 0 	 q 	 p. A method of finding rotations equivalent to
a given rotation is now apparent: We simply have to find
all the quaternions s0qs corresponding to the rotations
S0RS. Apart from irrelevant scaling factors the quaternions
s that represent the generators of the rotational symmetry
groups of the various Bravais lattices can be chosen as
follows:

Cubic (1 0 0 1), (1 1 1 1), (0 1 1 0)
Hexagonal (

ffiffiffi
3
p

0 0 1), (0 1 0 0)
Rhombohedral (1 0 0

ffiffiffi
3
p

), (0 1 0 0)
Tetragonal (1 0 0 1), (0 1 1 0)
Orthorhombic (0 0 0 1), (0 1 0 0)
Monoclinic (0 0 1 0)
If the aim is to find the canonical rotation representing

the equivalence class to which a given rotation R belongs,
it is not necessary to find all rotations of the equivalence
class. Moreover, the quaternion methods reveal further
simplifications; starting from a given quaternion q repre-
senting a rotation q about an axis n (10.3), and any qua-
ternion s,

q0 ¼ sq�ss ¼ (q0, Sq) ð10:5Þ

where S is the orthogonal matrix associated with the qua-
ternion s. Thus the rotations associated with q and q0 have
the same angle of rotation –– around different axes.

All rotations equivalent to the rotation given by a qua-
ternion q can be expressed as sðs0qÞ �ss where s and s0 are
quaternions associated with symmetries of L. It follows
from this and the previous statement that the canonical
rotation of the equivalence class can be found by comput-
ing the g quaternions s0q, picking out the quaternion q0 of
this set that has the least angle q, then computing the g
quaternions sq0�ss and selecting the one whose vector part
lies in the principal fundamental region of the stereogram
for the rotation group of L. The number of quaternion
multiplications required in this search algorithm is
abridged by making use of the following properties of the
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quaternions s that represent 180� rotations (for which
s0 ¼ 0). For any quaternions a ¼ (a0 a1 a2 a3),

s � (0 1 0 0) ! sa�ss � (a0 a1 �a2 �a3) ,
sa � (a1 �a0 a3 �a2)

s � (0 0 1 0) ! sa�ss � (a0 �a1 a2 �a3) ,
sa � (a2 �a3 �a0 a1)

s � (0 0 0 1) ! sa�ss � (a0 �a1 �a2 a3) ,
sa � (a3 a2 –a1 –a0) .

We demonstrate the method by means of a simple ex-
ample –– the same example we used in Section 6: the
‘cubic hexagonal lattice’ with h ¼ (0 1 1) and X ¼ 3,
Y ¼ 1. n � hE�1 � (0

ffiffiffi
6
p ffiffiffi

3
p

) so that n ¼ (0
ffiffiffi
2
p

1)/
ffiffiffi
3
p

and therefore

q � (3 0
ffiffiffi
6
p ffiffiffi

3
p

) .

Finding all equivalent rotations is now simply a matter
of multiplying this q, on the right and on the left, by all
possible products of the quaternions s1 ¼ (

ffiffiffi
3
p

0 0 1) and
s2 ¼ (0 1 0 0). There are 144 cases. The quaternions s0

and s are of the form s2
as1

b (a ¼ 0, 1; b ¼ 0, 1, . . . , 5)
and in each case, from q0 ¼ s0qs we can extract

tan ðq=2Þ ¼ jq
0j

q00
; h � q0E :

To simply obtain the canonical rotation rather than the
whole equivalence class, the computation goes as follows:

q � (3 0
ffiffiffi
6
p ffiffiffi

3
p

) ! tan (q/2) ¼ 1
s1q � (2

ffiffiffi
3
p
�

ffiffiffi
6
p

3
ffiffiffi
2
p

6) ! tan (q/2) ¼
ffiffiffi
5
p

s1
2q � (0 �3

ffiffiffi
2
p ffiffiffi

6
p

4
ffiffiffi
3
p

) ! tan (q/2) ¼1
s1

3q � (
ffiffiffi
3
p ffiffiffi

6
p

0 �3) ! tan (q/2) ¼
ffiffiffi
5
p

s1
4q � (6 3

ffiffiffi
2
p ffiffiffi

6
p
�2

ffiffiffi
3
p

) ! tan (q/2) ¼ 1
s1

5q � (4
ffiffiffi
3
p ffiffiffi

6
p

3
ffiffiffi
2
p

0) ! tan (q/2) ¼ 1/
ffiffiffi
2
p

s2q � (0 �3
ffiffiffi
3
p
�

ffiffiffi
6
p

) ! tan (q/2) ¼1
s2s1q � (

ffiffiffi
6
p

2
ffiffiffi
3
p
�6 3

ffiffiffi
2
p

) ! tan (q/2) ¼
ffiffiffiffiffi
11
p

s2s1
2q � (3

ffiffiffi
2
p

0 �4
ffiffiffi
3
p ffiffiffi

6
p

) ! tan (q/2) ¼
ffiffiffi
3
p

s2s1
3q � (

ffiffiffi
6
p
�

ffiffiffi
3
p
�3 0) ! tan (q/2) ¼

ffiffiffi
2
p

s2s1
4q � (3

ffiffiffi
2
p
�6 �2

ffiffiffi
3
p
�

ffiffiffi
6
p

)! tan (q/2) ¼
ffiffiffi
3
p

s2s1
5q � (

ffiffiffi
6
p
�4

ffiffiffi
3
p

0 �3
ffiffiffi
2
p

) ! tan (q/2) ¼
ffiffiffiffiffi
11
p

The computation of the last six quaternions on the list
is facilitated by noting that for any quaternion
a ¼ (a0 a1 a2 a3), s2a � (a1 �a0 a3 �a2). The quaternion
in this list that gives the smallest (positive) angle q is
q0 ¼ s1

5q. We then compute all quaternions sq0�ss (for all of
which, tan (q=2) ¼ 1/

ffiffiffi
2
p

):

q0 � (4
ffiffiffi
3
p ffiffiffi

6
p

3
ffiffiffi
2
p

0) ! k ¼ ( 1 1 0 )
s1q0s1

5 � (4
ffiffiffi
3
p
�

ffiffiffi
6
p

3
ffiffiffi
2
p

0) ! k ¼ ( 0 1 0 )
s1

2q0s1
4 � (

ffiffiffi
6
p

–
ffiffiffi
3
p

0 0) ! k ¼ ( �11 0 0 )
s1

3q0s1
3 � (4

ffiffiffi
3
p

–
ffiffiffi
6
p

–3
ffiffiffi
2
p

0) ! k ¼ ( �11 �11 0 )
s1

4q0s1
2 � (4

ffiffiffi
3
p ffiffiffi

6
p

–3
ffiffiffi
2
p

0) ! k ¼ ( 0 �11 0 )
s1

5q0s1 � (
ffiffiffi
6
p ffiffiffi

3
p

0 0) ! k ¼ ( 1 0 0 )
s2q0s2 � (4

ffiffiffi
3
p ffiffiffi

6
p

–3
ffiffiffi
2
p

0) ! k ¼ ( 0 �11 0 )
s2s1q0s1

5s2 � (4
ffiffiffi
3
p

–
ffiffiffi
6
p

–3
ffiffiffi
2
p

0) ! k ¼ ( �11 �11 0 )
s2s1

2q0s1
4s2 � (

ffiffiffi
6
p

–
ffiffiffi
3
p

0 0) ! k ¼ ( �11 0 0 )

s2s1
3q0s1

3s2 � (4
ffiffiffi
3
p

–
ffiffiffi
6
p

3
ffiffiffi
2
p

0) ! k ¼ ( 0 1 0 )
s2s1

4q0s1
2s2 � (4

ffiffiffi
3
p ffiffiffi

6
p

3
ffiffiffi
2
p

0) ! k ¼ ( 1 1 0 )
s2s1

5q0s1s2 � (
ffiffiffi
6
p ffiffiffi

3
p

0 0) ! k ¼ ( 1 0 0 )

The computation of the last six quaternions on the list
is facilitated by noting that for any quaternion
a ¼ (a0 a1 a2 a3), s2as2 � (a0 a1 ––a2 ––a3). The quater-
nion of this list that satisfies the criterion 0 � 2k2 � k1,
0 � k3 for n to lie in the principal region of the spherical
representation for the hexagonal lattice is (

ffiffiffi
6
p ffiffiffi

3
p

0 0)
� (

ffiffiffi
2
p

1 0 0), which gives n = (1 0 0), h = ( 2 �11 0 ).

11. Conclusions

The algorithmic method developed by Niggli and Buerger
for finding a ‘reduced’ unit cell for a given lattice can be
applied to any given set of generating vectors that serve to
define the lattice; the generating vectors do not need to be
linearly independent. The method can therefore be applied
to the union of the sets of generators for two lattices, lead-
ing to a ‘reduced cell’ for the displacement shift lattice.
Grimmer’s reciprocity theorem then gives immediately the
corresponding CSL. This very simple approach to the co-
incidence site problem leads to an equally simple and illu-
minating approach to the concept of relative orientations
and equivalence classes of rotations.
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