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The problems of redundancy and superfluous indices in indexing the planes and

axes in a decagonal quasicrystal are considered, using a scheme of five coplanar

vectors in the quasiperiodic plane and one perpendicular vector. Of all the

indexing schemes in use, this scheme offers the maximum advantage. An

analogy is drawn to the hexagonal system using Miller–Bravais indices. Based on

this, a symmetry-based indexing system for decagonal phases is devised that

follows a simplified approximate zone law analogous to the exact zone law for

the hexagonal case. The indices based on this scheme will be designated as

‘Frank indices’. High-symmetry electron diffraction zone-axis patterns as well as

powder X-ray diffraction patterns are indexed using Frank indices and

compared with those of other indexing schemes.

1. Introduction

It is understood that a decagonal phase exhibiting two-

dimensional quasiperiodicity as well as one-dimensional

periodicity (Bendersky, 1985; Chattopadhyay et al., 1985)

requires a minimum of five basis vectors for indexing the

quasilattices. Five-index schemes in which four of the base

vectors are coplanar with a fifth perpendicular to them, along

the tenfold symmetry axis, have been used extensively. Steurer

and his co-workers (Steurer, 1989; Steurer & Mayer, 1989;

Steurer & Kuo, 1990) and Cervellino et al. (1998) identified the

unit cell at a minimum higher dimensional lattice through

Patterson analysis and used it for indexing. Similarly, Yama-

moto & Ishihara (1988) used five-integer indices for the planes

and proposed a corresponding scheme for directions in

decagonal structures. These indexing schemes avoid redun-

dancy of indices by exploiting the fact that only four planar

vectors are required to index two-dimensional quasiperiodic

patterns in a plane (Janssen, 1988). However, the symmetry of

the structure is not elegantly represented by this kind of

indexing – the relation between index sets of symmetrically

related spots is far from obvious. Moreover, in these schemes

the relation between reciprocal space and direct space is

derived by projection from a five-dimensional non-orthogonal

lattice onto a three-dimensional subspace. As a consequence,

it is not at all straightforward, using these schemes, to under-

stand the symmetry-related planes and directions and to

interpret the experimental electron and X-ray diffraction

patterns.

A six-index scheme for decagonal quasicrystals has been

used by Fitz Gerald and co-workers (Fitz Gerald, 1988; Choy

et al., 1988). Five base vectors are coplanar, corresponding to

the five vertices of a regular pentagon; the sixth, perpendicular

to them, is along the axis of tenfold symmetry. In this kind of

scheme, the indices for diffraction spots related by the tenfold

symmetry differ only by permutations and sign changes, so the

symmetry of the structure is clearly and simply represented.

However, because of the redundancy in the set of base vectors,

the problem of non-uniqueness arises. The six-index scheme

we introduce here, which we designate as ‘Frank indexing’,

solves the non-uniqueness problem and adopts a straightfor-

ward relationship between reciprocal space and direct space

that leads to a simple zone law. The situation for decagonal

quasicrystals is very closely analogous to the indexing of

hexagonal crystals, for which either a three-index scheme or a

four-index scheme can be employed, but the four-index

Frank–Weber scheme has a greater elegance and logic because

it reflects the symmetry of the structure.

The problem of non-uniqueness in the Fitz Gerald-type six-

index schemes was addressed by Mukhopadhyay et al. (1989),

who suggested a ‘least path criterion’ (LPC) in order to assign

unique indices. A mathematical proof of the uniqueness was

provided by Mukhopadhyay & Lord (2002).

Other more complex indexing schemes exist for decagonal

quasicrystals. Koopmans et al. (1987) provided an indexing

scheme for the diffraction pattern of decagonal phases by

extending the structural model advocated by Ho (1986), where

a pentagonal bipyramid of base vectors is derived from a



distorted icosahedral basis. This kind of approach may be

regarded as analogous to the use of a rhombohedral basis for

indexing hexagonal and trigonal crystals. Mandal & Lele

(1991), Prasad et al. (1997) and Mandal et al. (2003) employed

a similar distorted icosahedral basis, projected from a six-

dimensional orthogonal unit cell, where the magnitude of one

base vector is different from the others. Aragon et al. (1990)

also used the same six base vectors but with a different scaling

constant for indexing. A curious indexing method was intro-

duced by Dalton et al. (1992), who advocated a scheme based

on two appropriately distorted icosahedra rotated 36� about a

common axis (i.e. periodic axis), giving an index set of 11

integers.

The redundant four-index scheme for indexing hexagonal

crystals (Weber, 1922; Frank, 1965) is now accepted as stan-

dard and its superiority over the non-redundant three-index

scheme is now taken for granted. In spite of the close analogy

between the hexagonal and the decagonal cases, this does not

appear to have happened in the case of decagonal quasicrys-

tals: the five-index scheme is very commonly employed. In a

sense, it is analogous to the three-index scheme earlier used

for indexing hexagonal crystals. The main aim of the present

work is to draw attention to this analogy between the hexag-

onal and decagonal cases and, in the process of doing so, to

clarify some of the problems arising from the use of redundant

axes and superfluous indices.

2. Indexing using a redundant axis

The indexing of directions and planes when there are redun-

dant axes is an important challenge. The two-dimensional

hexagonal lattice provides the simplest example of the use of a

redundant axis. Two axes suffice but a third can be introduced

to bring out the symmetry. This leads to multiple indexing

possibilities. To retain uniqueness, one way is to impose a

restriction that u + v + w = 0. This condition can be understood

in terms of projection from a three-dimensional cube. It is the

zone law applied to the zone axis [111], the axis of projection.

Frank (1965) showed that a three-dimensional hexagonal

lattice can similarly be obtained by projection from four

dimensions. His observations can be briefly summarized as

follows: let e1, e2, e3, e4 be the axes of a Cartesian coordinate

system in four-dimensional space and consider the four-

dimensional lattice given by the points with position vectors

e1u1
þ e2u2

þ e3u3
þ ð�e4Þu

4
ð1Þ

and its reciprocal lattice, given by

h1e1 þ h2e2 þ h3e3 þ h4ðe4=�Þ: ð2Þ

(ui and hi are integers.) The zone law takes the simple form

h1u1
þ h2u2

þ h3u3
þ h4u4

¼ 0: ð3Þ

Projection along the [1110] axis onto the three-dimensional

space u1 + u2 + u3 = 0 gives a three-dimensional hexagonal

lattice with c/a = �
p

(3/2). The indices [u1u2u3u4] and

(h1h2h3h4) and the zone law (3) for the hexagonal lattice are

inherited from the four-dimensional lattice. For the particular

case � = 1, the four-dimensional lattice is (hyper)cubic and the

hexagonal lattice is ‘‘Frank’s cubic hexagonal lattice’’

(Ranganathan et al., 2002).

2.1. Algebraic geometry

If ei (i = 1, . . . , N) is a set of vectors in Euclidean n space En,

an N-tuple of real numbers [u1, u2, . . . , uN] determines a

position vector

u ¼ eiu
i: ð4Þ

(We adopt the Einstein summation convention: where a label

appears twice in an expression, once as a subscript and once as

a superscript, a summation is implied. Thus, for example, eiu
i =

e1u1 + e2u2 + . . . + eNuN.) A vector h determines an N-tuple

(h1, h2, . . . , hN),

hi ¼ h � ei: ð5Þ

A hyperplane with unit normal n, at a distance d from the

origin, is given by the equation

n � x ¼ d: ð6Þ

Writing h = n/d, the condition u � n = 0 for a vector u to be

parallel to this plane then implies

hiu
i
¼ h1u1

þ h2u2
þ . . .þ hNuN

¼ 0: ð7Þ

The axis along ei, given parametrically by x = �ei, cuts the

hyperplane (6) at � = 1/hi, i.e. the numbers hi are equal to the

reciprocals of the intercepts of the plane, with the N axes:

ðh1; h2; . . . ; hNÞ ¼ ð1=�1; 1=�2; . . . ; 1=�NÞ: ð8Þ

The above simple concepts are the foundations for the

indexing methods employed in crystallography. Observe the

considerable generality of the above statements. There is no

assumption that the vectors ei be linearly independent, nor do

we need to assume n = N. The above statements remain valid

whether N > n [as in the use of a superfluous axis for the

indexing of hexagonal crystals, first introduced by Weber

(1922), or in the indexing of quasicrystals] or N < n (as when

three-dimensional space is regarded as a subspace of a space

of higher dimensions). In crystallographic applications, the ui

are integers and the points with position vectors u given by (1)

constitute a lattice. The ratios u1 : u2 : . . . : uN determine a

zone axis. The lattice planes intersect the axes at rational

values of �i, so that the hi given by (5) are rational. Families of

parallel crystal planes are determined by the ratios h1 : h2 : . . .
: hN, so that families of parallel planes may be indexed by sets

of integers hi, the Miller indices. Equation (4) is of course the

familiar zone law. When N = n and the vectors ei are linearly

independent, the reciprocal lattice can be defined simply as the

lattice generated by the vectors ei that satisfy

ei
� ej ¼ �

i
j ð9Þ

(where the �i
j are the components of the unit N � N matrix).

The families of crystal planes of the original lattice are then

conveniently related to the points of the reciprocal lattice

through
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h ¼ hie
i: ð10Þ

So far, all is simple and straightforward and well known.

Indeed, it is ‘standard text book material’. Our aim has been to

present it in the clearest and briefest possible way, to establish

our notational conventions and to set the scene for what we

intend as a definitive treatment of the subtleties that arise

when N > n. We shall emphasize two important particular

cases – the Weber four-index scheme for hexagonal crystals

and the indexing problem raised by decagonal quasicrystals –

and highlight their similarities and their differences. The

problems that arise in cases of linearly dependent base vectors

all have one source: the failure of equation (9).

2.2. The hexagonal lattice

A plane hexagonal lattice can be generated by two vectors

e1 and e2 of equal length subtending an angle of 120�. The

reciprocal vectors e1 and e2 given by (9) are equal in length

and subtend an angle of 60�. The indexing method that is now

standard for trigonal and hexagonal systems employs a

superfluous base vector e3, defined by

e1 þ e2 þ e3 ¼ 0: ð11Þ

A fourth vector e4 perpendicular to the plane, along the

sixfold axis, completes the set of generating vectors for a

three-dimensional hexagonal lattice. The point symmetry of

the structure is then properly represented in the system of

zone-axis indices [u1, u2, u3, u4].

Frank (1965) considered, and solved, the problem of dealing

similarly with the reciprocal vectors. The reciprocal lattice

generated by e1 and e2 [obtained from (9) with N = n = 2] is of

course also a hexagonal lattice, so it can be generated by three

redundant vectors in the proper 120� configuration, such as e1,

e2
� e1 and �e2, but the usefulness of the reciprocal-lattice

concept for indexing planes is then lost. The solution

presented by Frank was to regard the plane hexagonal lattice

as a projection from a three-dimensional primitive cubic

lattice along the [111] direction onto the plane x + y + z = 0.

The columns of the matrix

a

c0 c1 c2

s0 s1 s2

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0
@

1
A ¼ a

2

2 �1 �1

0
ffiffiffi
3
p

�
ffiffiffi
3
pffiffiffi

2
p ffiffiffi

2
p ffiffiffi

2
p

0
@

1
A; ð12Þ

where cr = cos (2r�/3) and sr = sin(2r�/3) can be interpreted as

the Cartesian components of a cube of edge length a
p

(3/2).

Projection onto the plane z = 0 (perpendicular to the [111] axis

of the cube) then gives the three base vectors

ðe1e2e3Þ ¼ a

c0 c1 c2

s0 s1 s2

0 0 0

0
@

1
A ¼ a

2

2 �1 �1

0
ffiffiffi
3
p

�
ffiffiffi
3
p

0 0 0

0
@

1
A; ð13Þ

for a plane hexagonal lattice of edge length a. For the three-

dimensional hexagonal lattice, one can simply introduce a

fourth vector perpendicular to these three:

e4 ¼ c

0

0

1

0
@

1
A: ð14Þ

The four vectors (e1, e2, e3, e4) are readily obtained by

projection from a four-dimensional lattice. When c/a =
p

(3/2)

(Frank’s ‘cubic hexagonal’ lattice), the four-dimensional

lattice is (hyper)cubic.

The reciprocal hexagonal lattice proposed by Frank is

obtained by projection from the reciprocal of the lattice in the

higher dimension. This gives

ðe1e2e3
Þ ¼

2

3a

c0 c1 c2

s0 s1 s2

0 0 0

0
B@

1
CA ¼ 1

3a

2 �1 �1

0
ffiffiffi
3
p

�
ffiffiffi
3
p

0 0 0

0
B@

1
CA;

e4 ¼
1

c

0

0

1

0
B@

1
CA: ð15Þ

An alternative approach to the problem of reciprocal vectors,

when linearly dependent base vectors are involved, makes use

of the concept of the generalized inverse of a matrix (Ben-

Israel & Greville, 1977). The method was explored by Mackay

(1977), who showed that, in the case of the Weber indexing for

a hexagonal lattice, it leads to the same reciprocal lattice as the

one given by Frank, defined by equation (10). The indexing

problem for quasicrystals has been discussed in terms of

generalized inverses by Lord (2003).

The definition (9) of the reciprocal vectors in the case of

linearly independent base vectors simply amounts to finding

the inverse of a matrix. If the components of the vectors ei

(referred to a Cartesian coordinate system) are written as the

columns of a matrix E, then the components of the reciprocal

vectors ei are given by the rows of the inverse matrix E�1. The

corresponding matrix E for a set of redundant axes has no

inverse – it is in general not even a square matrix. However,

every matrix E possesses a unique Moore–Penrose inverse

(M–P inverse) E� satisfying

E�� ¼ E; EE� ¼ ðEE�ÞT; E�E ¼ ðE�EÞT;

EE�E ¼ E; E�EE� ¼ E� ð16Þ

(superscript T denotes matrix transpose). The M–P inverse of

the matrix given in (13) is in fact the matrix given in (15)

(Lord, 2003); the projection method and the generalized

inverse method are equivalent. The M–P inverse is a valuable

concept for dealing with problems that arise from redundancy

of axes (Mackay, 1977; Mandal, 1994; Lord, 2003).

Recall that the indices defined by (4) and (5) satisfy the

zone law (7) independently of whether or not the base vectors

are linearly dependent, and that these indices hi are the

reciprocals of the intercepts of a lattice plane with the axes.

However, when the reciprocal base vectors for a hexagonal

lattice are defined by equation (13), as in Frank’s scheme,

these indices hi are not the same as the indices appearing in

(10). Let us therefore write (k1, k2, k3) for the components of

reciprocal vectors,
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h ¼ kie
i: ð17Þ

The hi and ki are related through

hi ¼ kjP
j
i ; ð18Þ

where

P
j
i ¼ ej � ei ¼

1

3

2 �1 �1 0

�1 2 �1 0

�1 �1 2 0

0 0 0 3

0
BB@

1
CCA: ð19Þ

In terms of the indices ki, the zone law takes the form

kjP
j
i ui ¼ 0 ð20Þ

(k4 = h4). Written out in full,

2ðk1u1
þ k2u2

þ k3u3
Þ � ðk2u1

þ k3u1
þ k3u2

þ k1u2 þ k1u3 þ k2u3Þ þ 3k4u4 ¼ 0: ð21Þ

Note that, because of (5) and (11) [and as can be seen from

(18) and the fact that the first three column sums of P are

zero],

h1 þ h2 þ h3 ¼ 0 ð22Þ

is satisfied identically, but that [also because of (11) and as can

be seen from (18) and the fact that the first three row sums of

P are zero] there is a freedom of choice for the index sets ki:

(k1 + m, k2 + m, k3 + m) and (k1, k2, k3), for any rational m,

represent the same family of planes. Choosing m =�(k1 + k2 +

k3)/3 gives indices ki that satisfy

k1 þ k2 þ k3 ¼ 0: ð23Þ

Then the ki are identical to the Miller–Bravais indices hi and

the complicated zone law (20) reduces to the usual

h1u1
þ h2u2

þ h3u3
þ h4u4

¼ 0: ð24Þ

From the form of (4) and (11), there is a corresponding

freedom of choice for the indices ui: [u1 + m0, u2 + m0, u3 + m0]

and [u1, u2, u3] represent the same zone axis u. Choosing m0 =

�(u1 + u2 + u3)/3, we get the Weber zone-axis symbols, satis-

fying

u1 þ u2 þ u3 ¼ 0: ð25Þ

If we choose to satisfy either (23) or (25) (or both), the simple

zone law applies. If neither are satisfied, then the appropriate

zone law is the more complicated equation (21).

2.3. The decagonal quasilattice

The indexing of directions and planes in quasilattices is an

important challenge. Whereas, for the hexagonal system

discussed above, the employment of an indexing scheme with

N > n is optional, in quasicrystals this condition is an essential

feature of the structure. A large number of indexing schemes

have been proposed for the indexing of decagonal quasicrys-

tals. The scheme used by Choy et al. (1988) and Fitz Gerald et

al. (1988) has five coplanar vectors e1, . . . , e5 corresponding to

position vectors of a regular pentagon and therefore satisfying

e1 þ e2 þ e3 þ e4 þ e5 ¼ 0 ð26Þ

(Fig. 1). Their components with respect to a Cartesian coor-

dinate system in the plane can be taken to be the columns of

the matrix

E ¼ a
c0 c1 c2 c3 c4

s0 s1 s2 s3 s4

� �

¼
a

2

2 �� �� �� ��

0 �� � �� ���

� �
; ð27Þ

where cr = cos(2r�/5), sr = sin(2r�/5), � = (1 +
p

5)/2, � = 1� �,

� =
p

(3 � �).

These vectors are obtained by projection onto a plane of the

vectors in five dimensions whose Cartesian components are

given by the columns of

a

c0 c1 c2 c3 c4

s0 s1 s2 s3 s4

c0 c3 c1 c4 c2

s0 s3 s1 s4 s2

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0
BBBBBB@

1
CCCCCCA

¼
a

2

2 �� �� �� ��

0 �� � �� ���

2 �� �� �� ��

0 �� �� ��� �

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0
BBBBBB@

1
CCCCCCA
: ð28Þ

These five vectors in five dimensions are the edges of a

hypercube of edge length a
p

(5/2).

The M–P inverse of E is

E� ¼
2

5a2
ET

ð29Þ

(Lord, 2003). The reciprocal vectors, given by the rows of E�,

are then

ei ¼
2

5a2
ei: ð30Þ

Equation (9) is replaced by

ej
� ei ¼ P

j
i ; ð31Þ

where
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P ¼ E�E ¼
1

5

2 �� �� �� ��
�� 2 �� �� ��
�� �� 2 �� ��
�� �� �� 2 ��
�� �� �� �� 2

0
BBBB@

1
CCCCA: ð32Þ

The treatment of the decagonal case is now clearly analogous

to Frank’s treatment of the hexagonal case. Adding a sixth

vector e6 perpendicular to the plane (i.e. along the axis of

tenfold symmetry – the periodic direction) seems to be the

most natural and relevant reference system for the underlying

structure of these decagonal quasicrystals.

The complicated zone law analogous to (20) is now

kiP
i
ju

j
þ k6u6

¼ 0 ð33Þ

with P given by (32). Written out in full, this is

2ðk1u1 þ k2u2 þ k3u3 þ k4u4 þ k5u5Þ

þ ð� � 1Þðk2u1
þ k3u2

þ k4u3
þ k5u4

þ k1u5
þ k1u2

þ k2u3

þ k3u4
þ k4u5

þ k5u1
Þ � �ðk3u1

þ k4u2
þ k5u3

þ k1u4

þ k2u5 þ k1u3 þ k2u4 þ k3u5 þ k4u1 þ k5u2Þ þ 5k6u6 ð34Þ

(Singh & Ranganathan, 1996).

2.4. The indexing scheme of Fitz Gerald

In spite of the close analogy with the hexagonal case, the

problem of finding a satisfactory indexing scheme for decag-

onal quasicrystals raises problems that are absent from the

hexagonal analogy. In the hexagonal case, the projection from

four dimensions to three requires a splitting of the four-

dimensional space into two orthogonal spaces, the three-space

and a one-dimensional space perpendicular to it. Thus only

one condition (k1 + k2 + k3 = 0) is required to guarantee that

the orthogonality condition for vectors in three dimensions is

manifested in the three-dimensional subspace as the simple

zone law, and to bring about the identity of the two kinds of

index, the hi of (10) and the ki of (17).

For projection from six dimensions to three, the six-

dimensional space is split into two orthogonal three-spaces,

and three conditions are required. They are contained in the

identity

hQ ¼ 0; ð35Þ

where Q is the rank-3 matrix I � P. The indices hi that satisfy

the simple zone law

h1u1
þ h2u2

þ h3u3
þ h4u4

þ h5u5
þ h6u6

¼ 0 ð36Þ

are necessarily irrational, whereas the integer indices ki satisfy

the very complicated zone law (34).

Fitz Gerald et al. (1988) and Choy et al. (1988) devised a

practical approach that avoids these difficulties. They were

able to label the diffraction peaks in patterns associated with

important zone axes of decagonal quasicrystals with sets of six

integer indices ki satisfying

k1u1
þ k2u2

þ k3u3
þ k4u4

þ k5u5
þ k6u6

¼ 0: ð37Þ

As is clear from our discussion, this is not a zone law; as

pointed out by Fitz Gerald et al., it ‘looks superficially like’ the

simple zone law. The reciprocal vectors obtained from the

indices ki do not actually belong to the zone axis labelled by ui.

But they are surprisingly close – the vectors k = kie
i and u =

eiu
i tend to be nearly perpendicular.

We shall refer to the indexing scheme based on the

approximate zone law (37) as the Fitz Gerald (FG) scheme.

Some insight into the possible reason for the effectiveness

of the FG scheme has been provided by Singh & Ranganathan

(1996), who showed that the complicated zone law (34)

approaches condition (37), in a certain limit. A simple way of

establishing this is to observe that

�ei ¼ ejT
j
i ;T ¼

0 0 �1 �1 0

0 0 0 �1 �1

�1 0 0 0 �1

�1 �1 0 0 0

0 �1 �1 0 0

0
BBBB@

1
CCCCA: ð38Þ

Applying T repeatedly to u = eiu
i produces the inflationary

sequence u, �u, �2u, . . . . The corresponding sequence of

indices, starting from [1 �11 0 0 0], is

1 �11 0 0 0

0 0 �11 0 1

1 �11 �11 0 1

1 �11 �22 0 2

2 �22 �33 0 3

3 �33 �55 0 5

5 �55 �88 0 8

. . . :

Each row is the sum of the two previous rows – hence the

appearance of Fibonacci numbers. Since the ratio of two

successive terms in the Fibonacci series 1, 1, 2, 3, 5, 8, 13, . . .
tends, in the limit, to �, we deduce that the ratios u1 : u2 : u3 : u4 :

u5 of the indices in the above sequence tend, in the limit, to

1: �11: ��� : 0 : �.

Now observe that [u1, u2, u3, u4, u5] = [1, �11, ���, 0, �] satisfies

P
j
i ui
¼ uj: ð39Þ

Thus, in the limit, the zone law (34) tends to the simpler law

(37). This is for the inflationary sequence starting from

[1 �11 0 0 0]. But, since P is a cyclic matrix, the same result will

obviously hold starting from any cyclic permutations of

[1 �11 0 0 0]. But then, any index set satisfying

u1 þ u2 þ u3 þ u4 þ u5 ¼ 0 ð40Þ

is a linear combination of the cyclic permutations of [1 �11 0 0 0].

Hence the convergence of the complicated zone law to the

simpler form is established for any inflationary sequence.

2.5. Redundancy of index sets

Fitz Gerald et al. and Choy et al. did not address the

problem of non-uniqueness of indices in the FG scheme. The
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redundancy in the index sets [u1, u2, u3, u4, u5] and (k1, k2, k3,

k4, k5) would appear at first sight to be a more serious problem

than the corresponding problem for the hexagonal lattice.

Changes in the index sets of the form

ui ! ui þQi
jm
0j; ki ! ki þmjQ

j
i; ð41Þ

where Q = I � P have no effect on the indices

hi ¼ kjP
j
i ð42Þ

and no effect on the zone law (33) (because PQ = QP = 0).

However, for rational indices ui or ki the transformations (41)

are to be restricted to the addition of a quintuple of rational

numbers that are a linear combination of the rows (or

columns) of Q. The only possibility is then

½u1; u2; u3; u4; u5
�

! ½u1 þm0; u2 þm0; u3 þm0; u4 þm0; u5 þm0�; ð43Þ

ðk1; k2; k3; k4; k5Þ

! ðk1 þm; k2 þm; k3 þm; k4 þm; k5 þmÞ ð44Þ

with rational m, m0. So the analogy with the hexagonal case is

preserved.

There are essentially just three reasonable ways of

obtaining unique indexing from the FG scheme, corre-

sponding to different choices of m (and/or m0) in (43).

(I) Five-index schemes. The redundancy can be removed by

employing only four of the five coplanar base vectors. This was

suggested by Janssen (1988) and has been applied extensively

(Yamamoto & Ishihara, 1988; Steurer, 1989; Steurer & Kuo,

1990; Steurer et al., 1993). These authors employ a projection

method to obtain the base vectors and the reciprocal base

vectors, projecting from five dimensions to three dimensions.

To simplify the presentation, we consider the projection from

four dimensions to two dimensions, starting from the four

dimensions whose unit cell is given by the four vectors whose

Cartesian coordinates are the columns of

2

5a

c1 c2 c3 c4

s1 s2 s3 s4

c3 c1 c4 c2

s3 s1 s4 s2

0
BB@

1
CCA ð45Þ

[cr = cos(2�r/5), sr = sin(2�r/5)]. Projection onto the two-

dimensional subspace given by the first two rows gives the four

reciprocal vectors (e2, e3, e4, e5), identical to those of the FG

scheme. In the scheme adopted by Yamamoto and Steurer, the

four base vectors for direct space (i.e. for zone-axis symbols)

are obtained by projection of the lattice reciprocal to the

lattice given by (45). This leads to a complication because the

lattice is not a hypercubic lattice. The transposed inverse of

(45) is

a

c1 � 1 c2 � 1 c3 � 1 c4 � 1

s1 s2 s3 s4

c3 � 1 c1 � 1 c4 � 1 c2 � 1

s3 s1 s4 s2

0
BB@

1
CCA; ð46Þ

so that the four planar base vectors in direct space are (e2� e1,

e3� e1, e4� e1, e5� e1). The five-index schemes eliminate the

non-uniqueness of the redundant six-axis scheme, but at the

expense of obscuring the underlying decagonal structure. In a

five-index scheme, symmetry-related vectors acquire indices

that look totally different. From the above description, it is

apparent that there are essentially five different five-index

schemes (related to each other by the fivefold rotational

symmetry) depending on which of the five planar pentagonal

base vectors is discarded. The zone law is lost in these

schemes.

(II) The least path criterion (LPC). The LPC scheme

proposed by Mukhopadhyay et al. (1989) is an alternative way

of dealing with the problem of redundancy inherent in

indexing schemes when the base vectors are linearly depen-

dent. It solves the problem by setting one of the indices to

zero, thus removing a redundant axis, but it is not always the

same axis that is eliminated. LPC indexing minimizes |k1| +

|k2| + |k3| + |k4| + |k5|. As shown by Mukhopadhyay & Lord

(2002), this is achieved by applying the transformation (44)

with �m equal to the integer that takes the middle position

(i.e. the third position) when the ki (i = 1, . . . , 5) are arranged

in numerical order. The LPC scheme has the advantage of

providing unique indices while preserving the attractive

feature of the FG system: that the symmetries of the decag-

onal structure are manifested in the indexing system simply by

sign changes and permutations. The least path criterion can, of

course, also be applied to the zone-axis symbols ui. A disad-

vantage of the system is that, if both zone-axis indices and

reciprocal indices are LPC, the simple zone law (37) is lost.

(III) Frank indexing. The unique indexing scheme proposed

here is precisely analogous to the Miller–Bravais indexing of

hexagonal lattices. Frank indices satisfy

k1 þ k2 þ k3 þ k4 þ k5 ¼ 0

[analogous to (23)]. This is achieved by a transformation (44)

with m = �(k1 + k2 + k3 + k4 + k5)/5 to the FG indices. To

ensure that Frank indices are integers, this amounts to a

multiplication of the six-integer sets by the matrix

M ¼

4 �1 �1 �1 �1 0

�1 4 �1 �1 �1 0

�1 �1 4 �1 �1 0

�1 �1 �1 4 �1 0

�1 �1 �1 �1 4 0

0 0 0 0 0 5

0
BBBBBB@

1
CCCCCCA
: ð47Þ

This scheme has several advantages over the other two

schemes: it respects the decagonal symmetry of the structure it

is describing; the decagonal symmetries correspond simply to

sign changes and permutations in the index sets; the validity of

the simple approximate zone law (37) is assured because the

identities k1 + k2 + k3 + k4 + k5 = 0 and u1 + u2 + u3 + u4 + u5 = 0

are the defining features of the Frank scheme.

3. Translation between indexing schemes

The five-index schemes used by Yamamoto & Ishihara (1988)

and by Steurer and his co-workers (Steurer, 1989; Steurer &

Kuo, 1990; Steurer et al., 1993) originated from the formalism
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developed by Janssen (1988). These schemes are derived by

projection from a five-dimensional non-orthogonal lattice

onto a three-dimensional subspace in order to generate the

real- and reciprocal-space structures. It is not at all straight-

forward, using these schemes, to understand the symmetry-

related planes and directions and to interpret the experi-

mental electron and X-ray diffraction patterns. The Frank

indexing scheme we have proposed, being analogous to the

hexagonal system, has the advantage of bringing out clearly

the symmetry-related planes and directions and also providing

a simple zone-axis rule which is not possible in other indexing

schemes. It is, clearly, important to be able to convert indices

between different schemes.

A five-index scheme of the kind employed by Yamamoto &

Ishihara or by Steurer and co-workers can be converted to a

six-index scheme by simply inserting an extra index, equal to

zero, thus (k1, k2, k3, k4, k6) ! (k1, k2, k3, k4, 0, k6). The

purpose of this is to facilitate the various rules for translating

between the different indexing schemes. We can now convert

FG, five-index schemes or LPC indices to a Frank indexing

scheme simply by multiplying by the matrix M shown in (47).

An alternative statement of this rule is: calculate m = (k1 + k2 +

k3 + k4 + k5), multiply the indices by 5 and then subtract m

from the first five indices.

Since M is singular, there is no inverse matrix that can be

used to translate from Frank indexing to LPC or to a five-

index scheme. However, an index set satisfying the ‘least path

criterion’ obtained from a Frank index set (k1, k2, k3, k4, k5, k6)

is (k1�m, k2�m, k3�m, k4�m, k5�m, k6), where m is the

middle number when the integers k1, k2, k3, k4, k5 are arranged

in numerical order. The resulting indices will then have a

common factor 5, which is to be divided out. Similarly, to

convert from Frank indexing to a five-index scheme in which,

say, the base vector e5 is missing, we choose m = k5. Again, the

resulting indices have a common factor 5, which is to be

divided out.

A difficulty arises when comparing the indexing of X-ray

diffraction patterns of quasicrystals given by different authors,

over and above the question of different choices of base

vectors. This is the phenomenon of inflation and deflation. The
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Table 1
Important reflections observed in the powder X-ray diffraction pattern obtained from Al–Cu–Co decagonal quasicrystalline phases (Fig. 2).

The LPC, Steurer and Frank indices are displayed. The fundamental reciprocal constants for the Frank scheme are chosen to be the same as in the LPC scheme.

Label d (nm) Intensity (I/Imax) LPC indices Frank indices Steurer indices Yamamoto indices

1 0.388 35 1, 0, �1, �1, 0, 0 �2, 3, �2, �2, 3, 0 1, 0, 0, 0, 0 0, 0, �1�1, 0
2 0.330 20 1, 1, �1, �1, 0, 0 5, �5, 5, �5, 0, 0 0, 1, �1, 0, 0 1, 0, 0, �1, 0
3 0.240 12 1, 0, �2, �2, 0, 0 4, �1, �1, �1, �1, 0 0, 0, �1, �1, 0 1, 0, �1, �1, 0
4 0.224 100 1, 0, �2, �2, 0, 2 4, �1, �1, �1, �1, 10 0, 0, �1, �1, 2 1, 0, �1, �1, 0
5 0.209 70 0, 0, 0, 0, 0, 4 0, 0, 0, 0, 0, 20 0, 0, 0, 0, 4 0, 0, 0, 0, 4
6 0.207 23 2, 1, �1, �2, 0, 0 0, 5, �5, 0, 0, 20 1, 0, 0, �1, 0 1, 1, �1, �1, 0
7 0.207 18 1, 1, �1, �1, 0, 4 5, �5, 5, �5, 0, 20 0, 1, �1, 0, 4 1, 0, 0, �1, 4
8 0.204 10 2, 0, �3, �3, 0, 0 6, �4, 1, 1, �4, 25 �1, 0, �1, �1, 4 1, 0, �2, �2, 4
9 0.190 12 2, 1, �1, �2, 0, 4 0, 5, �5, 0, 0, 20 1, 0, 0, �1, 4 1, 1, �1, �1, 4

10 0.175 14 3, 0, �3, �2, 2, 0 5, 0, �5, 0, 0, 0 0, �1, �2, �2, 0 1, �1, �3, �2, 0

Table 2
The peaks are identified on a diffraction pattern of the T6 decagonal phase Al40Mn25Fe15Ge20 (annealed at 1050 K for 100 h) from Yokoyama et al.
(1997) (Fig. 3).

The fundamental reciprocal constants for the Frank scheme are chosen to be the same as in the LPC scheme.

Diffraction spots d spacing (nm) LPC indices Frank indices Steurer indices Yamamoto indices

A 0.388 1, 0, �1, �1, 0, 0 �2, 3, �2, �2, 3, 0 1, 0, 0, 0, 0 0, 0, �1�1, 0
B 0.330 1, 1, �1, �1, 0, 0 5, �5, 5, �5, 0, 0 0, 1, �1, 0, 0 1, 0, 0, �1, 0
C 0.240 1, 0, �2, �2, 0, 0 4, �1, �1, �1, �1, 0 0, 0, �1, �1, 0 1, 0, �1, �1, 0
D 0.224 1, 0, �2, �2, 0, 2 7, �3, 2, �3, �3, 10 0, 1, �1, �1, 2 1, 0, �1, �1, 0
E 0.209 0, 0, �1, �1, 0, 5 6, �4, 1, 1, �4, 25 �1, 0, �1, �1, 5 1, 0, 0, 0, 5
F 0.207 1, 0, �2, �2, 0, 3 4, �1, �1, �1, �1, 15 0, 0, �1, �1, 3 1, 0, �1, �1, 3
G 0.207 0, 0, 0, 0, 0, 6 0, 0, 0, 0, 0, 30 0, 0, 0, 0, 6 0, 0, 0, 0, 6
H 0.204 2, 1, �1, �2, 0, 0 0, 5, �5, 0, 0, 0 1, 0, 0, �1, 0 1, 1, �1, �1, 0
I 0.190 1, 0, �2, �2, 0, 4 4, �1, �1, �1, �1, 20 0, 0, �1, �1, 4 1, 0, �1, �1, 4
J 0.175 1, �1, 1, �1, 0, 6 �15, 25, �25, 15, 0, 30 2, �3, 3, �2, 6 �1, 2, �2, 1, 6
K 0.148 2, 0, �3, �3, 2, 0 16, �4, �9, 11, �14, 0 �3, �2, �3, �5, 0 3, 0, �2, 0, 0
L 0.145 2, 1, �1, �2, 0, 6 0, 5, �5, 0, 0, 30 1, 0, 0, �1, 6 1, 1, �1, �1, 6
M 0.127 1, 3, 0, �4, �3, 5 4, 4, �1, �1, �6, 25 1, 2, 1, �1, 5 3, 4, 2, 0, 5
N 0.126 3, 2, �2, �3, 0, 0 5, 0, 0, �5, 0, 0 1, 1, �1, �1, 0 2, 1, �1, �2, 0
O 0.120 2, 0, �4, �4, 0, 0 8, �2, �2, �2, �2, 0 0, 0, �2, �2, 0 2, 0, �2, �2, 0
P 0.107 3, 2, �2, �3, 0, 6 5, 0, 0, �5, 0, 30 1, 1, �1, �1, 6 2, 1, �1, �2, 6



five planar base vectors in the systems mentioned here satisfy

�e1 = �e3 � e4 etc., where � = (1 +
p

5)/2. Thus, for example,

the indexing used by Yamamoto and that used by Steurer

differ by �-inflation. To convert Steurer indices to the corre-

sponding Yamamoto indices, the �-inflation matrix T given in

equation (38) acts on the first five indices. Thus, a Steurer

index (k1, k2, k3, k4, 0, k6)S becomes (k01, k02, k03, k04, k05, k6) =

(�k3 � k4, �k4, �k1, �k1 � k2, �k2 � k3, k6). If the new fifth

index is not zero, it is to be subtracted out; (k1, k2, k3, k4, 0,

k6)Y = (k01 � k05, k02 � k05, k03 � k05, k04 � k05, 0, k6).

In the tables, LPC indices are obtained directly from the FG

indices by �3 inflation followed by subtracting out the ‘middle

index’. The Steurer indices are derived from FG by a � infla-

tion, followed by a subtracting out of one of the indices (for

the sake of this demonstration, we have chosen k5). From FG

to the Yamamoto indices requires �2 inflation as the scaling

constants in reciprocal space are related accordingly (i.e. the

way the fundamental reciprocal-lattice vector is chosen).

The rules governing the various interconversions of the

indices of reciprocal vectors displayed in the tables should

now be clear. The interconversion of the zone-axis symbol

involves, of course, a ��1 deflation whenever a � inflation is

applied to the reciprocal indices. Conversion of a zone-axis

symbol from a six-index scheme to a five-index scheme

involves an additional complication because of the peculiar

relation between the base vectors in direct space, for these two

kinds of scheme. Let ei (i = 1, . . . , 6) be the base vectors in

direct space in the FG scheme. Then the base vectors in a five-

index scheme of the kind employed by Yamamoto and Steurer

are

e1 � e5; e2 � e5; e3 � e5; e4 � e5; e6: ð48Þ

On account of the identity e5 = � e1 � e2 � e3 � e4, it follows

that, if [u1, u2, u3, u4, u5, u6] is a zone-axis symbol in the FG,

suitably deflated, the corresponding symbol in the five-index

system will be [w1, w2, w3, w4, w6], where
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Table 3
Indexing of pseudo-fivefold zone axis of T6 decagonal phase {pattern I, zone axis [3, �8, �8, 3, 10, 1] of Choy et al. (1988)}.

Labels correspond to the diffraction spots marked in Fig. 4(a). Labels are the same as those of Choy et al. (1988). The fundamental reciprocal constants for the
Frank scheme are chosen to be the same as in the Fitz Gerald scheme.

Rel-vector label Fitz Gerald indices Frank indices LPC indices Steurer indices Yamamoto indices

9 1, �1, 1, �1, 0, 0 5, �5, 5, �5, 0, 0 1, 1, �1, �1, 0, 0 0, 1, �1, 0, 0 1, 0, 0, �1, 0
21 0, 1, �1, 0, 0, 0 10, 5, �5, 0, 0, 0 2, 1, �1, �2, 0, 0 1, 0, 0, �1, 0 1, 1, �1, �1, 0
10 0, 0, �1, 0, �1, 2 2, 2, �3, 2, �3, 10 1, 1, 0, �1, 0, 2 0, 0, 0, �1, 2 1, 1, 0, 0, 2
26 1, �1, 0, �1, �1, 2 7, �3, 2, �3, �3, 10 2, 2, �1, �2, 0, 2 0, 1, �1, �1, 2 2, 1, 0, �1, 2

7 0, �1, 1, �1, 0, 3 1, �4, 6, �4, 1, 15 �1, 0, 0, 0, �1, 3 0, 1, 0, 1, 3 0, 0, 1, 0, 3
8 �1, 1, �1, 0, 0, 3 �4, 6, �4, 1, 1, 15 0, 0, 0, �1, �1, 3 1, 0, 1, 0, 3 0, 1, 0, 0, 3

20 0, 0, 0, �1, 0, 3 1, 1, 1, �4, 1, 15 2, 2, 0, �1, 0, 3 1, 1, 0, 0, 3 1, 1, 0, �1, 3
17 0, 1, 0, 1, 0, 5 �2, 3, �2, 3, �2, 25 �1, 0, 1, 0, �1, 5 0, 0, 1, 0, 5 0, 1, 1, 1, 5
18 1, 0, 1, 0, 0, 5 3, �2, 3, �2, �2, 25 0, 1, 0, �1, �1, 5 0, 1, 0, 0, 5 1, 1, 1, 0, 5
42 1, 1, 0, 0, 0, 5 3, 3, �2, �2, �2, 25 3, 3, 0, �2, 0, 5 1, 1, 0, �1, 5 2, 2, 0, �1, 5
39 0, 0, 1, 0, 0, 8 �1, �1, 4, �1, �1, 40 �2, 0, 1, 0, �2, 8 0, 1, 1, 1, 8 0, 1, 2, 1, 8
40 0, 1, 0, 0, 0, 8 �1, 4, �1, �1, �1, 40 0, 1, 0, �2, �2, 8 1, 1, 1, 0, 8 1, 2, 1, 0, 8

Zone axis 3, �8, �8, 3, 10, 1 3, �8, �8, 3, 10, 1 1, �2, �2, 1, 2, 1 2, �5, �5, 2, 1 1, �3, �3, 1, 1

Table 4
Indexing of pseudo-threefold zone axis [8, �21, �21, 8, 26, 1] of Choy et al. (1988).

Labels correspond to the diffraction spots marked in Fig. 4(b). Labels are the same as those of Choy et al. (1988). The fundamental reciprocal constants for the
Frank scheme are chosen to be the same as in the Fitz Gerald scheme.

Rel-vector label Fitz Gerald indices Frank indices LPC indices Steurer indices Yamamoto indices

9 1, �1, 1, �1, 0, 0 5, �5, 5, �5, 0, 0 1, 1, �1, �1, 0, 0 0, 1, �1, 0, 0 1, 0, 0�1, 0
21 0, 1, �1, 0, 0, 0 0, 5, �5, 0, 0, 0 2, 1, �1, �2, 0, 0 1, 0, 0, �1, 0 1, 1, �1, �1, 0

2 2, �1, 1, 1, �1, 2 8, �7, 3, 3, �7, 10 �1, 0, 0, 0, 0, 2 �2, 0, �1, �1, 2 1, 0, 1, 1, 2
5 �1, 1, 0, 0, 1, 3 �6, 4, �1, �1, 4, 15 0, 0, 1, 1, 0, 3 1, 0, 1, 1, 3 �1, 0, 0, 0, 3
6 0, 0, 1, �1, 1, 3 �1, �1, 4, �6, 4, 15 0, 0, �1, �1, 1, 3 1, 1, 0, 1, 3 0, 0, 0, �1, 3

32 0, 1, 0, �1, 1, 3 �1, 4, �1, �6, 4, 15 3, 2, �1, �2, 0, 3 2, 1, 0, 0, 3 1, 1, �1, �2, 3
15 0, �1, 0, 0, �1, 5 2, �3, 2, 2, �3, 25 �1, 0, 1, 1, 0, 5 �1, 0, 0, 0, 5 0, 0, 1, 1, 5
16 0, 0, �1, 0, �1, 5 2, 2, �3, 2, �3, 25 1, 1, 0, �1, 0, 5 0, 0, 0, �1, 5 1, 1, 0, 0, 5
37 �1, 0, 0, 0, 0, 8 �4, 1, 1, 1, 1, 40 �1, 0, 2, 2, 0, 8 0, 0, 1, 1, 8 �1, 0, 1, 1, 8
29 0, �1, 1, �1, 0, 8 1, �4, 6, �4, 1, 40 �1, 0, 0, 0, �1, 8 0, 1, 0, 1, 8 0, 0, 1, 0, 8
30 �1, 1, �1, 0, 0, 8 �4, 6, �4, 1, 1, 40 0, 0, 0, �1, �1, 8 1, 0, 1, 0, 8 0, 1, 0, 0, 8
38 0, 0, 0, �1, 0, 8 1, 1, 1, �4, 1, 40 2, 2, 0, �1, 0, 8 1, 1, 0, 0, 8 1, 1, 0, �1, 8

Zone axis 8, �21, �21, 8, 26, 1 8, �21, �21, 8, 26, 1 2, �5, �5, 2, 6, 1 5, �13, �13, 5, 1 3, �8, �8, 3, 1
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�1 4 �1 �1

�1 �1 4 �1
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For example, to translate the FG zone-axis symbol [3, �8, �8,

3, 10, 1] to a Steurer symbol, first carry out the ��1 deflation:

[3, �8, �8, 3, 10]! [2, �5, �5, 2, 6]. Subtract out u5, [2, �5,

�5, 2, 6]! [�4, �11, �11, �4] and apply the matrix given in

(50): [�4, �11, �11, �4]! [10, �25, �25, 10]. Finally, divide

by the common factor 5; we get the zone-axis symbol [2, �5,

�5, 2, 1].

4. Experimental results and discussions: diffraction
patterns (XRD & EDP and ZAPM)

We have indexed the peaks of the T4 DQC phase of

Al–Cu–Co (Fig. 2) and those of the T6 DQC phase of Al–Mn

(Fig. 3). The labelling of the latter is from Takeuchi & Kimura

(1987) [identified on an Al–Mn–Fe–Ge DQC pattern from
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Figure 4
(a) Pseudo-fivefold pattern and (b) pseudo-threefold pattern from the
Al–Mn system. For indices of the labelled spots refer to Tables 3 and 4.

Figure 3
XRD pattern of the T6 DQC phase of Al40Mn25Fe15Ge20 alloy annealed
at 1050 K for 100 h, from Yokoyama et al. (1997). Labelling of the peaks is
in accordance with Takeuchi & Kimura (1987); the indices of these peaks
are given in Table 2. Reprinted with permission from Yokoyama et al.
(1997). Copyright (1997) Japanese Journal of Applied Physics.

Figure 2
XRD pattern of the T4 DQC phase of Al–Cu–Co alloy. For indices of the
labelled peaks refer to Table 1.



Yokoyama et al. (1997) (Fig. 3)] based on both LPC and MB

indices and displayed in Tables 1 and 2, respectively. Selected-

area diffraction patterns displaying pseudo-fivefold and

pseudo-threefold patterns (Figs. 4a, b) from a DQC of the Al–

Mn system with 1.2 nm period are indexed. The corresponding

indices are displayed in Tables 3 and 4. The same labels as

those used by Choy et al. (1988) are used, for easy comparison

of all indices.

5. Conclusions

Non-uniqueness of indices is a consequence of redundancy in

a reference system and presents special problems. We have

examined these problems in some detail in the case of

decagonal quasicrystals, with particular emphasis on the

analogy between hexagonal crystals and decagonal quasi-

crystals. The analogy naturally suggests a ‘Frank indexing

scheme’ analogous to the Miller–Bravais indexing for hexag-

onal crystals as a way of dealing with the problem of non-

uniqueness. As in the hexagonal case, the scheme arises

naturally from a cubic lattice in higher-dimensional space. The

analogy, however, fails to provide a simple zone law that is

satisfied exactly by integer indices – the reason for this has

been clarified. However, the simple approximate zone law

used by Choy et al. is inherited by the Frank scheme. That

different authors use different indexing schemes is an obstacle

to the comparison of results. This is a problem of importance

to experimentalists, which has not received much attention in

the literature. Methods of translating between several impor-

tant indexing schemes have been presented and the advan-

tages of the six-index Frank scheme for indexing decagonal

quasicrystals have been emphasized: it respects the symmetry

of the structure it describes, it provides unique indices, and the

simple approximate zone law is valid.
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