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A growing body of evidence supports the importance of solute-centered atomic clusters in the structure and stability of metallic glasses.
Beyond a few simple cases, a broad account of these clusters has not been provided elsewhere. Detailed characteristics of a canonical collection
of efficiently packed hard sphere clusters are presented here as idealized structural elements in metallic glasses. The nomenclature, topology,
geometry and packing efficiency of these clusters are provided and their relevance to the structure of metallic glasses is discussed.
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1. Introduction

It has long been suggested that atomic clusters may
provide representative structural elements in metallic glasses.
The dense random packing model described atomic clusters
surrounding interstices, or Bernal’s canonical ‘holes,’ in
systems of equal-sized spheres.1) Solute-centered atomic
clusters were introduced as a modification of the dense
random packing model, where solute atoms in transition
metal-metalloid glasses were proposed to occupy the inter-
stices in the center of Bernal’s canonical clusters formed by
the transition metal solvent atoms.2) It was later shown that
the concentrations of ‘holes’ of the sizes necessary to
accommodate the metalloid solutes were too small to account
for observed glass compositions3) so that this model has not
been developed further.

Rather than fitting passively into interstices formed by a
pre-existing array of solvent atoms, solute atoms may control
and define their local environment. The stereo-chemically
defined model (SCD) implicitly takes this view to rationalize
the dominance of a single atomic cluster.4) A tri-capped
trigonal prism (TTP), one of Bernal’s canonical clusters, was
considered based on the measured coordination number of
solvent atoms around metalloid solutes and on the observa-
tion that crystal structures of compositionally similar alloys
often show a strained version of such local polyhedra around
the metalloid solutes. Experimental evidence for strained
TTP clusters has been obtained by high-resolution electron
micro-diffraction combined with atomistic simulations.5)

Icosahedral clusters have often been proposed as an impor-
tant structural element in metallic glasses based on analysis
of experimental data6–12) and computational results.13–15)

This, along with the observation that many glass-forming
alloys are compositionally similar to quasicrystalline and
icosahedral alloys, provides adequate support for the ex-
pectation that icosahedra may exist in many metallic glasses.

The number N of equal-sized atoms or spheres that can be
first nearest neighbors about a different-sized atom or sphere
will change in direct relation to the relative sizes of atoms.16)

This idea has been applied to the local structure of metallic
glasses by considering efficiently packed solute-centered
clusters with solvent atoms only in the first coordination

shell.17) The radius ratio R (radius of solute divided by radius
of solvent atoms) determines the greatest number of solvent
atoms that can be coordinated to a solute atom. For a given N,
more efficient packing corresponds to smaller values of R. An
absolute lower bound R� for the possible radius ratios for any
given N was obtained17) and is shown in Table 1. Analysis
showed that the values of R in a large number of metallic
glasses are quite close to the theoretically predicted lower
bound, and it was concluded that efficiently packed solute-
centered atomic clusters are an important feature in the
structure of metallic glasses.17) This idea provides the basis of
the efficient cluster packing (ECP) structural model for
metallic glasses.18) Good quantitative agreement between
experimental observations and predictions from the ECP
model supports the conclusion that efficiently packed solute-
centered clusters provide a meaningful description for the
structure of metallic glasses.

A range of distinct atomic clusters is likely to be important
in the structure of metallic glasses, and coordination numbers
as low as 8 and as high as 20 are suggested by the values of R
in known metallic glasses.17,18) Experimentally measured
local coordination numbers similarly suggest clusters with a
wide range in N. However, only the TTP (N ¼ 9) and
icosahedron (N ¼ 12) have been discussed in any detail in
the context of metallic glass structures. On the other hand, a

Table 1 Values of N and corresponding idealized values of R�ðNÞ for

efficiently packed clusters.

N R�ðNÞ N R�ðNÞ

3 0.154701 14 1.04733

4 0.224745 15 1.11632

5 0.361654 16 1.18318

6 0.414214 17 1.24810

7 0.518145 18 1.31123

8 0.616517 19 1.37271

9 0.709914 20 1.43267

10 0.798907 21 1.49119

11 0.884003 22 1.54840

12 0.902113 23 1.60436

13 0.976006 24 1.65915
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great deal of work is available in the mathematics community
to describe the optimal packing of N equal-sized spheres
about a central sphere of different size. Optimal packing can
be defined and quantified in different ways, and in the present
context we are interested in clusters that provide the
minimum radius ratio R for a given coordination number
N. This is well-known as the Fejes19) or Tammes20) problem,
and is posed as the placement of N equal spheres on the
surface of a different-sized sphere so as to maximize the
minimum included angle between the N sphere centers.
Rigorous mathematical solutions have been achieved for
clusters with 2 � N � 14 and for N ¼ 2421–23) and putative
optimal solutions have been proposed for other clusters with
values of N in excess of 100.24–27) Readers are referred to
other sources for a more complete description of the body of
work surrounding this problem.19,22,27)

The clusters discussed in this paper are hard sphere models
representing a single central solute atom coordinated to N

solvent atoms forming a coordination shell. The purpose is to
present and discuss clusters that are likely local representa-
tive structural constituents in metallic glasses. Although the
clusters in actual metallic glasses are likely to be distorted
relative to these idealized clusters, this analysis may never-
theless provide useful insights for visualizing the structure of
metallic glasses. Optimally packed clusters and putative
optimal clusters are included here, as well as other clusters of
special symmetry or marginally sub-optimal packing. For
completeness, and for reference to other amorphous solids
such as oxide glasses, clusters with 3 � N � 20 are describ-
ed. Specific details regarding cluster nomenclature, topology,
symmetry and packing efficiency are presented, and a brief
discussion of the proposed influence of soft spheres is
provided.

2. Candidate Atomic Clusters

A selection of rigorous optimally packed clusters, putative
optimally packed clusters and sub-optimally packed clusters
is listed in Table 2 and is shown in Fig. 1. Coordinates for the
clusters in Fig. 1 were taken from.27) The list given here is not
exhaustive. Each cluster is characterized by unique values of
R and N. The value � is the minimum angular separation
between two sphere centers in the first coordination shell, or
equivalently is the solid angle subtended by a single sphere in
the shell. An optimally packed cluster will have a minimum
value of R and a maximum value of � for a given N. The two
parameters are related by sinð�=2Þ ¼ 1=ð1þ RÞ. A number of
other descriptors is provided for each cluster and they are
described below.

Efficiently packed clusters typically have at least one
rotational axis of symmetry. Föppl notation24,26,28) provides
an intuitive description of the configuration for such clusters
and is used here. This notation consists of a series of integers
(ni) representing the number of solvent spheres at a given
latitude for successive parallel planes progressing from the N
to the S pole of the cluster, so that �ni ¼ N. Thus, a
tetrahedron is represented as ð1; 3Þ or ð2; 2Þ, and an
octahedron is ð1; 4; 1Þ or ð3; 3Þ. Where more than one axis
of rotational symmetry exists, the highest symmetry axis is
preferred. Adjacent rings with equal values of n, such as

ð2; 2Þ, ð3; 3Þ or the ð. . . 5; 5 . . .Þ rings in a ð1; 5; 5; 1Þ icosahe-
dron, are assumed to have an antiprism orientation, since this
gives the most efficient packing. The n spheres at a given
latitude generally form a regular polygon-exceptions for the
clusters presented here are mentioned below. A few clusters
have selected spheres that do not share an axis of rotational
symmetry with the remaining spheres in that cluster, and
these spheres are indicated with a tilde overbar in the Föppl
notation.

To each Föppl symbol there corresponds a unique cluster
with the largest possible � (equivalently, the smallest possible
R) where spheres in the coordination shell come into contact.
The connectivity symbol 2i 3 j 4k 5l lists the numbers of
spheres in the coordination shell in contact with 2, 3, 4 or 5
others (6 is not possible since this corresponds to a planar
arrangement), where iþ jþ k þ l ¼ N. We have, essential-
ly, a network whose nodes are sphere centres and whose
edges are lines joining centers of pairs of spheres in contact.
The ring structure {3u4v5w} of this network indicates the
number of triangles, quadrilaterals and pentagons formed by
the edges.

The trigonal cluster (3), tetrahedron ð1; 3Þ, octahedron
ð1; 4; 1Þ, icosahedron ð1; 5; 5; 1Þ and cuboctahedron ð4; 4; 4Þ
are well-known in many fields of science. If one sphere is
removed from the optimal octahedral cluster ð1; 4; 1Þ the five
remaining spheres are free to move relative to each other
without losing contact with the central sphere, but only if the
central sphere does not decrease in size. Therefore, for N ¼ 5

there are an infinite number of optimal configurations with
the same radius ratio

p
2� 1. Those with a non-trivial point

symmetry are ð1; 4Þ, ð1; 3; 1Þ and ð1; 2; 2Þ. Spheres in the
three-fold ring of ð1; 3; 1Þ are not fully constrained and are
free to move independently around the cluster equator. The
ð3; 3; 3Þ cluster is distinct from the TTP with three half
octahedral1) often discussed in the literature. The latter
cluster is based on the primitive trigonal prism with R ¼
0:528 and N ¼ 6 and the spheres that form the three half
octahedra do not contact the sphere at the center of the
cluster, while all nine spheres in the ð3; 3; 3Þ cluster are in
rigorous hard sphere contact with the central sphere. Several
clusters with similar packing efficiencies exist for N ¼ 10,
including ð2; 4; 2; 2Þ, ð1; 3; 3; 3Þ and ð1; 4; 4; 1Þ. The ð1; 5; 5Þ
cluster is an icosahedron with one sphere removed. The
ð3; 6; 3Þ cluster has two distinct conformations; one is the
ð4; 4; 4Þ cuboctohedron cluster of the fcc structure and the
other is a sub-unit of the hcp structure. A slight distortion of
the sub-optimal ð3; 3; 3; 3; 3Þ produces the putative optimal
ð3; 3; ~33; ~33; 3Þ, and in the same way the ð1; 2; 2; 4; 2; 2; 2; 2; 1Þ
cluster is a slight distortion of ð1; 4; 4; 4; 4; 1Þ.29) Careful
inspection of Figs. 1(s) and 1(t) shows that ð1; 3; 3; ~66; ~55; 1Þ is a
distorted version of ð1; 3; 3; 6; 3; 3; 1Þ, where a ð. . . 3; 3 . . .Þ
ring pair decomposes to the ð. . . ~55 . . .Þ configuration when one
of the spheres is removed. The spheres at a given latitude do
not necessarily form a regular polyhedron. Non-regular
polygons include the ð. . . 4 . . .Þ configurations in ð2; 4; 2; 2Þ,
ð1; 4; 2; 2; 4; 1Þ and ð1; 4; 2; 2; 4; 2; 2Þ, and the ð. . . 6 . . .Þ con-
figuration in ð1; 3; 3; 6; 3; 3; 1Þ.

In Table 2 a packing fraction and a packing efficiency are
given for each of the clusters. For sphere packing with
crystalline symmetry a packing fraction is readily defined as
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the fraction of space within a unit cell occupied by the
spheres. For a finite cluster there is no corresponding unique
definition. A cluster packing fraction can be defined as the
fraction of space occupied by the spheres of the cluster within
a spherical region characteristic of the cluster. Three
reasonable choices for the region suggest themselves: (1)
the smallest sphere concentric with the cluster centre, that
contains all the spheres of the cluster, radius 2þ R; (2) the
sphere through the centres of the spheres of the coordination
shell, radius 1þ R; (3) the sphere through the contact points
of the spheres of the shell, radius ð1þ RÞ cosð�=2Þ. The
cluster packing fraction we have calculated and listed in
Table 2 are the packing fractions within region (2). The two
conformations of the ð3; 6; 3Þ cluster provide a useful
benchmark, since they are representative units of the face-

centred cubic and hexagonal close-packed structures that
form the basis for many crystalline materials. The packing
fraction for these crystal structures is �=ð3

p
2Þ ¼ 0:7405,

which is close to the packing fraction determined here for the
isolated clusters. The clusters in Table 2 typically have
packing fractions at least as high as the ð3; 6; 3Þ cluster
(Fig. 2(a)). This supports earlier suggestions that efficiently
packed solute-centered clusters may be important in systems
where efficient filling of space is required.17,18)

Packing efficiency is a convenient parameter that serves to
distinguish more densely packed from less densely packed
configurations. Various definitions of packing efficiency are
possible. A packing efficiency for a cluster can be defined as
the actual cluster packing fraction divided by the ideal cluster
packing fraction that would be achieved if R could be reduced

Table 2 Efficiently packed cluster characteristics.

N Föppl Notation � R Connectivities
Ring

Structure

Point

Symmetry

Packing

Fraction

Packing

Efficiency
Comments Citation

3 3 120.0000 0.154701 23 {34} �66m2 0.1570 1 Optimum 21, 22)

4 1; 3 or 2; 2 109.4712 0.224745 34 {34} �443m 0.7615 1
Optimum

(tetrahedron)
21, 22)

5 1; 3; 1 90.0000 0.414214 2332 {43} �66m2 0.6746 0.833 Optimum 21, 22)

1; 4 90.0000 0.414214 344 {344} 4mm 0.6746 0.833 Optimum

1; 2; 2 90.0000 0.414214 234 {3242} mm 0.6746 0.833 Optimum

6
1; 4; 1 or

3; 3
90.0000 0.414214 46 {38} m�33m 0.8045 1

Optimum

(octahedron)
21, 22)

7 1; 3; 3 77.8695 0.591254 3443 {3443} 3mm 0.7152 0.905 Optimum 21, 22)

8 4; 4 74.8585 0.645329 48 {46} �882m 0.7537 0.963

Optimum

(square

antiprism)

21, 22)

2; 2; 2; 2 73.6935 0.667566 3444 {3444} �44m 0.7328 0.937 Sub-optimal

9 3; 3; 3 70.5288 0.732051 49 {3843} �66m2 0.7540 0.974 Optimum 21, 22)

1; 4; 4 70.0747 0.741826 3445 {45} 4m 0.7454 0.962 Sub-optimal

10 2; 4; 2; 2 66.1468 0.832465 364252 {364252} mm2 0.7400 0.963 Optimum 21, 22)

1; 3; 3; 3 66.0856 0.833970 3446 {3446} 3m 0.7389 0.961 Sub-optimal

1; 4; 4; 1 65.5302 0.847759 3842 {46} �882m 0.7283 0.946 Sub-optimal

11 1; 5; 5 63.4349 0.902113 4556 {31551} 5mm 0.7483 0.981 Optimum 21, 22)

12
1; 5; 5; 1 or

3; 3; 3; 3
63.4349 0.902113 512 {320} 5m�33 0.8066 1

Optimum

(icosahedron)
21, 22)

3; 6; 3 or 4; 4; 4 60.0000 1.00000 412 {3846} m�33m 0.7344 0.900
Sub-optimal

(cuboctahedron)

13 1; 4; 4; 4 57.1367 1.09115 3449 {3449} 4mm 0.7254 0.888 Optimum 23)

14 1; 4; 2; 2; 4; 1 55.6706 1.14164 414 {3848} �442m 0.7393 0.911 Optimum 23)

1; 4; 4; 4; 1 54.7355 1.17533 3846 {412} m�33m 0.7205 0.882

Sub-optimal

(rhombic

dodecahedron)

15 3; 3; ~33; ~33; 3 53.6579 1.21568 334953 {3114353} 1 0.7380 0.909 Putative optimal. 25, 27)

5; 5; 5 52.5002 1.26096 415 {3104552} 5=mm 0.7147 0.872 Sub-optimal

3; 3; 3; 3; 3 52.4757 1.26194 4956 {31446} 3mm 0.7143 0.871 Sub-optimal

16 4; 4; 4; 4 52.2444 1.27125 416 {3846} �882m 0.746 0.921 Putative optimal. 24, 25)

17 1; 4; 2; 2; 4; 2; 2 51.0903 1.31899 344854 {38411} mm 0.7554 0.938 Putative optimal 25, 27, 29)

1; 5; 5; 5; 1 51.0266 1.32169 3104552 {415} 5=mm 0.7540 0.936 Sub-optimal 24, 29)

18 1; 2; 2; 4; 2; 2; 2; 2; 1 49.5567 1.38602 223441052 {3241452} mm 0.7544 0.937 Putative optimal. 25, 27, 29)

1; 4; 4; 4; 4; 1 49.5517 1.38624 38410 {416} �882m 0.7543 0.936 Sub-optimal 24)

19 1; 3; 3; ~66; ~55; 1 47.6919 1.47354 41356 {3144851} 1 0.7440 0.918 Putative optimal 25–27)

20 1; 3; 3; 6; 3; 3; 1 47.4310 1.48635 3246512 {31849} �66m2 0.7661 0.956 Putative optimal 25, 27)
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to R�ðNÞ. This definition involves the same arbitrary choice
of region involved in the definition of cluster packing
fraction. A definition of packing efficiency that is free of this
arbitrariness, which was used to calculate the efficiencies in
Table 2, is N=N�ðRÞ, where N�ðRÞ is the function inverse to
that for R�ðNÞ:17)

N� ¼
2�

�þ qð�� �=2Þ
ð1Þ

where cos � ¼ cosð�=2Þ sinð�=qÞ, sinð�=2Þ ¼ 1=ð1þ RÞ and
q is the surface connectivity.30) Here, q is the greatest
connectivity allowable for the particular value of N (q ¼ 2

for N ¼ 3, q ¼ 3 for N ¼ 4; q ¼ 4 for 5 � N � 10 and q ¼ 5

for N � 11).17) As for packing fraction, many of the clusters
described here display packing efficiencies higher than the
ð3; 6; 3Þ cluster. The variation of packing efficiency with N is
shown in Fig. 2(a).

The variation of R with N is shown in Fig. 2(b). Less
efficiently packed clusters not considered here yield higher
values of R for a given N. The theoretical lower bound R�

achievable for a given N is shown by the solid line.17)

Discontinuities occur at R values where q changes from 2 to 3
(R ¼ 0:224745), from 3 to 4 (R ¼ 0:414214) and from 4 to 5
(R ¼ 0:902113). Maximum values of connectivity q are
common in efficiently packed clusters with N � 12, and as a
result the most efficiently packed clusters fall close to the
predicted curve, with the exception of ð1; 3; 3Þ. However, the
maximum surface connectivity of q ¼ 5 is relatively un-

common for hard sphere clusters with N � 13 (Table 2), so
that they have R values higher than theory by about 0.1. The
estimate of17) assumes that each sphere in the coordination
shell has the maximum q allowed for that value of R, but
packing constraints for hard spheres restrict the ability to
achieve these efficiently packed configurations. However,
soft spheres may allow these efficiently packed local surface
symmetries to be achieved, producing fundamentally new
cluster geometries. A good correlation between the idealized
radius ratios R� and atomic radius ratios in metallic glasses17)

supports the view that efficiently packed clusters of soft
spheres may provide a meaningful physical model for
metallic glasses.

While subtle inconsistencies are sometimes found in the
literature regarding details of the clusters described here, the
primary purpose of the present paper is to describe efficiently
packed clusters that may be important in the atomic structure
of metallic glasses. Internal strains, atomic relaxations and
soft spheres in condensed physical systems are likely to
overwhelm the mathematical distinction between touching
and ‘nearly touching’ hard spheres in idealized clusters.
Thus, small mathematical distortions between otherwise
similar idealized clusters are not likely to have a major
impact on actual structures in condensed physical systems.

3. Atomic Clusters in Condensed Systems

Adequate experimental evidence exists for the occurrence

Fig. 1 Efficiently packed clusters with Föppl notations of (a) 3; (b) 1; 3; (c) 1; 3; 1; (d) 1; 4; 1; (e) 1; 3; 3; (f) 4; 4; (g) 3; 3; 3; (h) 2; 4; 2; 2;

(i) 1; 4; 4; 1; (j) 1; 5; 5; (k) 1; 5; 5; 1; (l) 4; 4; 4; (m) 1; 4; 4; 4; (n) 1; 4; 2; 2; 4; 1; (o) 3; 3; ~33; ~33; 3; (p) 4; 4; 4; 4; (q) 1; 4; 2; 2; 4; 2; 2;

(r) 1; 4; 4; 4; 4; 1 (s) 1; 3; 3; ~66; ~55; 1; and (t) 1; 3; 3; 6; 3; 3; 1.
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of the clusters shown here as isolated ‘magic number
particles’ which have chemical and electronic properties that
suggest large ‘superatoms’.31–33) High performance comput-
ers now make possible the prediction of properties of
nanomaterials, and the employment of simulation techniques
to search for materials with desirable properties.34,35) In this
context knowledge of the possible cluster configurations that
can be formed from atoms of specific size ratios is important.
Direct experimental evidence also exists for the occurrence
of some of these clusters in condensed systems. The trigonal
cluster, tetrahedron, octahedron, icosahedron and cuboctahe-
dron are well-known in the structures of condensed matter. A
number of the remaining clusters in Table 2 also often occur
as local coordination polyhedra in inorganic crystalline
compounds.36,37) Nevertheless, many clusters in Table 2 have
not been discussed widely in the structure of condensed
matter.

The three Frank-Kasper polyhedra for N ¼ 14; 15; 1630) do
not represent optimally packed local configurations and so
are not represented here. The Frank-Kasper configurations
are conceived as subunits of a polytetrahedral structure, so
that the coordination polyhedra are deltahedra (all faces are

triangular). For N ¼ 12 it is possible for all edges to be equal
and in this case we do get a close-packed configuration.
Deltahedra necessarily have 6-connected vertices for N > 12,
which constrains Frank-Kasper clusters to be less efficiently
packed. For example, Frank-Kasper clusters with N ¼ 14 and
N ¼ 16 are ð1; 6; 6; 1Þ and ð1; 6; 6; 3Þ, respectively. The
sphere at the polar position in the ð1; 6 . . .Þ configuration
cannot simultaneously provide rigorous hard sphere contact
with all of the spheres in the adjoining six-fold ring. For the
cluster concept adopted here surface coordination is defined
by rigorous hard sphere contact, while in Frank-Kasper
clusters surface coordination is defined in a different way that
does not require physical contact of hard spheres.

It is difficult to obtain direct experimental evidence for
specific atomic cluster configurations in metallic glasses.
Nevertheless, there is broad general support for the occurrence
of clusters in metallic glasses from experimental,4–12,31) com-
putational13–15,31,32,35,38,39) and modeling17,18,30,34,36,37,40–44) ef-
forts. Rather than simply occurring in metallic glasses, the
ECP model provides quantitative agreement with a broad
range of experimental observations from the assumption that
the structure in metallic glasses is entirely built of solute-
centered atomic clusters.18,44) The ECP model further
assumes that efficient atomic packing is a major structure-
forming principle, and the clusters discussed here are
consistent with that requirement. The ð3; 3; 3Þ cluster has
been shown to exist in the structure of metal-metalloid
glasses,5) and ð4; 4; 4; 4Þ and ð1; 5; 5; 5; 1Þ clusters have been
discussed as possible representative structural elements in
Al-based glasses.42) A recent thorough computational study
has validated the major features of the ECP model, and
further introduces the concept of quasi-equivalent clusters.39)

Internal strains in the ECP model18) suggest that the actual
local structures may be distorted, producing sub-optimal
packing configurations such as those provided in Table 2. It
is even possible that the actual local atomic configurations in
metallic glasses may bear only little resemblance to the
idealized geometric hard sphere clusters in Fig. 1 and
Table 2. Structural variations may result from packing
defects that result in multiple atomic species of different
atomic sizes occupying the first coordination shell, from
influences of atomic bonding and electronic structure, and
from the metastable condition of the glass due to rapid
quenching. Nevertheless, the clusters described here provide
efficient cluster packings for the range of N relevant for
metallic glasses, and it is proposed that these clusters can be
considered as idealized representative structural elements in
metallic glasses.

4. Summary

The relevance of efficiently packed cluster configurations
to isolated atomic clusters is well-known, and it is becoming
widely accepted that solute-centered atomic clusters are
important structural elements in metallic glasses. A canonical
collection of efficiently packed clusters presented here are
proposed as idealized representations of the local structure in
metallic glasses. The radius ratio between solute and solvent
atoms is the major variable that controls the occurrence and
characteristics of these clusters. Most clusters described here

Fig. 2 Influence of cluster coordination number N on (a) packing fraction

and packing efficiency and (b) radius ratio R. The dashed line in (a) shows

the packing fraction for the ð4; 4; 4Þ cuboctahedron cluster that comprises

the face-centred cubic crystal structure. The solid line in (b) is the

theoretical minimum radius ratio R� from17) shown for comparison.
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display packing fractions and packing efficiencies higher
than the ð3; 6; 3Þ cluster that fully comprises the face-centered
cubic and hexagonal close-packed crystal structures. Internal
strains in actual metallic glass structures and deviation from
the assumption of simple hard sphere atoms are expected to
produce distortions in these idealized clusters. Nevertheless,
the ability to provide quantitative agreement with a range of
experimental observations in metallic glasses suggests that
these idealized clusters can provide a meaningful description
for the local structure of metallic glasses.
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