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Abstract

The c-brass structure was for a long time regarded as a modified bcc structure. It is more accurately described in terms of a 26-

atom cluster consisting of four interpenetrating icosahedral clusters. An alternative description in terms of a 38-atom cluster is also

illuminating. We discuss the c-brass structure in terms of the packing of spheres and the packing of �almost regular’ tetrahedra and

demonstrate a close relationship to the helical sphere packings investigated by Boerdijk, who considered the configuration of

touching spheres centred at the vertices of a Coxeter helix, and extended it by adding an extra layer of spheres. Adding a further

layer of spheres gives a rod-like structure in which every sphere of the original helix is surrounded by twelve others, configured as a

somewhat distorted icosahedron. Thus each tetrahedron of the initial structure is then shared by four icosahedra. This 26-sphere

cluster is a slightly distorted form of the 26-atom c-brass cluster.
� 2004 Elsevier B.V. All rights reserved.
PACS: 61.50.Ah; 61.66.Dk
1. Introduction

Bradley and Thewlis [1] identified the structure of c-
brass and described it in terms of a cubic unit cell con-

sisting of 27 cubic units – a 3 · 3 · 3 array – of a bcc

lattice. The points at the vertices of this block and the

one at its centre are removed, so that we get a structure

with a unit cell containing 27 · 2)2¼ 52 sites (Fig. 1).

The c-brass structure was identified to be a distorted

version of this geometrical model, in which the atoms
are shifted from the exact positions. Bradley and Jones

[2] described it in terms of a cluster of concentric shells

centred around the vacant sites. The first shell is a reg-

ular tetrahedron of 4 atoms. This is surrounded by 4

more atoms, over its faces, forming a larger tetrahedron.

The third shell is octahedral, 6 sites – one over each edge

of the small tetrahedron. The fourth is cuboctahedral,

12 sites. We have a cluster of 8+ 6+ 12¼ 26 atoms. The
remaining 26 sites in the unit cell are accounted for by

the shells around the vacancies at the vertices of the unit

cell.

In The Nature of the Chemical Bond [3] Pauling de-

scribes the 3 · 3 · 3 model of c-brass. He then casually
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makes the cryptical remark: ‘‘the structure is an icosa-

hedral one’’.
Nyman and Andersson [4] described the 26-atom

cluster as a packing of equal spheres (a convenient ide-

alization – in the c-alloys, of course, the spheres (atoms)

are of more than one kind). Place four spheres in con-

tact. Then place a sphere over each face of the tetrahe-

dral cluster. The centres and bonds then form a �stella
quadrangula’ built from five regular tetrahedra (Fig.

2(a)). Six more spheres placed over the edges of the
original tetrahedron form the octahedral shell. In terms

of the network of centres and bonds the cluster can be

represented by a structure built from equilateral trian-

gles (Fig. 2(b)) or as a packing of tetrahedra. In this

latter description 12 tetrahedra, not quite regular, are

packed around a stella quadrangula, giving a ring of five

tetrahedra around each edge of the inner tetrahedron.

Then 24 more tetrahedra give the 26-vertex structure
built from 41 tetrahedra (Fig. 3).

Without increasing the number of vertices, 16 more

tetrahedra can be inserted, revealing the structure to be

four interpenetrating icosahedra sharing a common

tetrahedral building block (Fig. 4). This �c-brass cluster’
can be augmented by placing three extra spheres over

four of the triangular faces of the cuboctahedral shell.

We then have a cluster of 38 �atoms’, located at the
vertices of a packing of 81 tetrahedra (Fig. 5). This
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Fig. 3. The c-brass cluster as a packing of 41 tetrahedra.

Fig. 1. The bcc structure underlying the description of c-brass given by

Bradley and Thewlis.
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cluster can be built from one tetrahedral and three

slightly irregular icosahedral building blocks – an

interesting geometrical configuration discovered by

Pearce [5].
Fig. 4. The c-brass cluster built from 57 tetrahedra; a configuration of

four interpenetrating icosahedra sharing a common tetrahedral

building block.
2. The Pearce cluster

The dihedral angle of a regular icosahedron is

dI ¼ 138:19� and the dihedral angle of a regular tetra-

hedron is dT ¼ 70:53�. Thus, 2dI þ dT ¼ 360�� 14:11�.
An �oblate’ icosahedron can be produced from a regular
icosahedron by increasing the dihedral angles at the

relevant edges to 144.25�. The deformation is slight, and

a cluster of four oblate icosahedra can be produced in

which each icosahedron is in face contact with the other

three, as in Fig. 5 [5]. Thus the network of bonds in

gamma brass can be described in terms of structures

very similar to the Pearce cluster – four icosahedra in

face contact with each other and with a central tetra-
Fig. 2. (a) The stella quadrangula. (b) The construction of c-b
hedron. The icosahedra in c-brass are distorted, but not
�oblate’. They each contain a central atom.

The 38-atom clusters can combine by sharing three

atoms between a pair of clusters. The structure can be

continued along every threefold axis (Fig. 6). Observe

how the whole structure can be described in terms of

tetrahedral building blocks. This description of a c-alloy
is implicit in the work of Belin and Belin [6].
rass cluster as described by Nyman and Andersson [4].



Fig. 5. The 57-tetrahedon cluster augmented to a cluster of 81 tetra-

hedra with 38 vertices (4 of them constituting the innermost tetrahe-

dron). The final figure is a modified �Pearce cluster’ consisting of 81

tetrahedra.

Fig. 6. With only a slight deformation a pair of 38-atom clusters can

share three vertices. In c-brass, this gives rise to the linking of 38-atom

clusters to form rod-like structures along the threefold axes.
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3. The Boerdijk–Coxeter helix

Coxeter [7] suggested a straightforward extension of

the concept of a regular polygon. A regular polygon as

usually defined is a cycle of vertices . . .1, 2, 3, . . . and
edges . . .12, 23, . . . obtained from a single point by re-

peated action of a rotation. Coxeter’s extension replaces

�rotation’ by the more general �isometry’ (distance pre-
serving transformation). A screw transformation gener-

ates a helical polygon (or polygonal helix), an infinite

sequence of vertices . . .)1, 0, 1, 2, . . . and edges joining

consecutive vertices. A Coxeter helix is a polygonal helix

such that every set of four consecutive vertices form a

regular tetrahedron. This produces a twisted rod of

tetrahedra, the Boerdijk–Coxeter helix [8,9]. The struc-

ture is aperiodic. A model can be produced by folding a
strip cut from the tiling of the plane by equilateral tri-

angles. Buckminster Fuller [10] called the helical tower

of tetrahedra the tetrahelix. It is generated by the re-

peated action of a screw transformation, which can be

determined as follows [9,11,12]:

In matrix notation, an isometry in Euclidean space

has the form

x ! Rxþ a; RRT ¼ I : ð1Þ
If a ¼ 0 we have a pure rotation about the origin. A
rotation in E3 through an angle h about an axis along

the unit vector n is given by the rotation matrix

R ¼ ehN ¼ I þ N sin hþ N 2ð1� cos hÞ; ð2Þ

where N is the skewsymmetric matrix

N ¼
0 �n3 n2
n3 0 �n1
�n2 n1 0

0
@

1
A: ð3Þ

It is convenient to use a 4 · 4 matrix notation. Defining

X ¼ x

1

� �
, S ¼ R a

0 1

� �
, then Eq. (1) is

X ! SX: ð4Þ
The points in E3 with coordinates ð�1;�1;�1Þ,
ð�1; 1; 1Þ, ð1;�1; 1Þ and ð1; 1;�1Þ are the vertices of a

regular tetrahedron (edge length
p
8); so are ð�1; 1; 1Þ,

ð1;�1; 1Þ, ð1; 1;�1Þ and (5/3, 5/3, 5/3). These can be

taken to be two consecutive tetrahedra of a B–C helix.

This is sufficient to deduce that

S ¼

�1 1 1 5=3
1 �1 1 5=3
1 1 �1 5=3
1 1 1 1

0
BB@

1
CCA

�1 �1 1 1
�1 1 �1 1

�1 1 1 �1

1 1 1 1

0
BB@

1
CCA

�1

¼ 1

3

2 2 1 2

2 �1 �2 2

�1 2 �2 2

0 0 0 3

0
BB@

1
CCA:

ð5Þ
Then, from N sin h ¼ ðR� RT Þ=2, cos h ¼ ð1þ traceRÞ=
2, we get, for the angle h of rotation of the B–C helix

(per edge of the Coxeter helix) and the direction n of the

screw axis,

cos h ¼ �2=3; n ¼ ½ 2 1 0 �p5: ð6Þ
The number of edges of the Coxeter helix, per turn, is

2p=h ¼ 2:73119 . . . The advance of the helix, per edge, is
n.d, where d is any edge (e.g. ½ 0 2 2 �). Since we have
chosen tetrahedra with edge length

p
8, we have the

advance per edge, for a B–C helix of tetrahedra of unit

edge length, d ¼ 1=
p
10.
4. Sphere packing

Boerdijk [8] investigated the tetrahelix in connection

with dense packings of equal spheres. The configuration

of four spheres in a tetrahedral configuration, each

touching the other three, gives the Rogers upper bound
for the upper limit of any possible packing fraction for

equal spheres. The bound can never be achieved because

regular tetrahedra won’t pack together in E3. However,

sphere packings that fill only a portion of space can



Fig. 7. The tetrahelix or Boerdijk–Coxeter helix and the associated helical packing of spheres.
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come much closer to the bound than hexagonal close

packing, the densest lattice packing. Boerdijk considered

the dense rod shaped packing in which the sphere cen-
tres lie on the vertices of the tetrahedra (Fig. 7), and the

effect of adding further spheres to this helical structure,

over the mid points of edges of the Coxeter helix. This

determines additional, only slightly irregular, tetra-

hedra, so that every edge of the helix is shared by

five tetrahedra.
5. Extension of the helical sphere packing

Further extensions of Boerdijk’s helical sphere pac-

kings may be considered. The next stage gives a rod-like

structure in which every vertex of the original helix of

tetrahedra is surrounded by twelve others, configured as a

somewhat distorted icosahedron (Fig. 8). Thus each

tetrahedron of the initial structure is now shared by four
icosahedra. This 26-sphere cluster is a slightly distorted

form of the 26-atom c-brass cluster. Another interesting

subset of the tetrahedra in this structure is the triplet of

distorted B–C helices twisted around each other as in

Fig. 9 [11,13]. One could go on adding more spheres, but
Fig. 8. The augmented helical sphere packing, containing c-bras
the deviation of the tetrahedra from regularity (corre-

sponding to lower density of the sphere packing) be-

comes more severe.
6. The polytope {3, 3, 5}

Regular tetrahedra cannot be packed to fill Euclidean

space E3, but in E4 they can. The vertices all lie on a

hypersphere, a space of constant curvature S3. The

polytope {3,3,5} [7,13,14] has 120 vertices, 720 edges,
1200 equilateral triangle faces and 600 regular tetrahe-

dral cells. Five cells surround each edge and twenty

surround each vertex – forming a regular icosahedron.

Circuits of 30 face-sharing tetrahedra occur in {3,3,5}.

They are each metrically identical to the Boerdijk–

Coxeter structure in three dimensional Euclidean space.

Sadoc and Mosseri [15] have devised methods of

understanding the structures of Frank–Kasper phases
[16] in terms of unfolding {3,3,5} to fit into E3, by

introducing disclination networks.

All the figures of structures involving tetrahedra that

we have discussed exist in E4 with all the tetrahedra

regular, as part of the polytope {3,3,5}.
s type clusters, represented as a polytetrahedral structure.



Fig. 9. The augmented Boerdijk–Coxeter helix viewed as three B–C helices twisted around a fourth.
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7. Conclusions

Two sphere packing arrangements, the c-brass
structure and a rod-like sphere packings based on an

augmented Boerdijk–Coxeter helix, have been consid-

ered and shown to be closely related. A 38-atom cluster,

with atoms at the vertices of a packing of 81 regular and

�almost regular’ tetrahedra, can be identified in c-brass.
Each of these shares a triangular face with eight others.
Our approach, based on step-by step computation of

vertex positions in a packing of tetrahedral building

blocks, suggests a promising approach to the modelling

of Frank–Kasper phases, and quasicrystalline phases

and their approximants.
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