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Abstract

Various schemes have been proposed and employed, which extend the method
of indexing lattice vectors and reciprocal-lattice vectors, so that it can be used in
the context of quasicrystals. The concept of the generalized inverse of a matrix
provides an elegant unified approach to the vectors and reciprocal vectors of
quasilattices, and their associated zone laws and inflation rules. We present a
survey, from the viewpoint provided by the concept of the Moore–Penrose
inverse, of the indexing problem for quasicrystals.

} 1. Introduction

The labelling of the vectors and reciprocal vectors of a Bravais lattice in E3 by
triplets of integers, satisfying a zone law k1x

1
þk2x

2
þk3x

3
¼ 0, is straightforward

and well known. The discovery of quasicrystals imposed a need to generalize this
method of labelling. The non-crystallographic point symmetries of quasicrystals
involve the necessity of employing more than three indices for the labelling of vectors
and reciprocal vectors. The problem is complicated by the redundancy that arises
when more than three numbers are employed to specify vectors in E3. A survey of the
literature reveals certain general geometrical and algebraic principles which have not,
as far as we know, been explicitly stated or presented in one place as a unified theory.
Our purpose is to present the general principles underlying indexing schemes for
crystals and quasicrystals and to illustrate them with the aid of some well-known
(and some less well-known) examples.

} 2. The Moore^Penrose inverse

Associated with any matrix E, there is a unique matrix E* that satisfies

EE
�
¼ ðEE

�
Þ
T, E

�
E ¼ ðE

�
EÞ

T, EE
�
E ¼ E, E

�
EE

�
¼ E

�: ð1Þ

Several properties of E
� follow readily from these defining relations.

(i) If E is n�N, of rank r, then E
� is N� n, of rank r.

(ii) (E�)T¼ (ET)*.
(iii) If n¼N¼ r, then E

� is just the inverse E�1 of E.
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E
� is the Moore–Penrose (M–P) generalized inverse of E (Ben-Israel and Greville

1977). The M–P inverse of E
� is E. Mackay (1977) has discussed various applications

of this concept, with special emphasis on crystallographic applications. In particular,
the generalized inverse can be applied to obtain a set of reciprocal vectors from a
redundant set of lattice translation vectors. (Essentially, if the columns of a matrix E

are the components of a set of lattice translation vectors, referred to an orthonormal
reference system, then the rows of E

� give the components of a set of reciprocal
vectors.) This was demonstrated for the four vectors that generate a hexagonal
lattice, in Weber’s (1922) indexing scheme (Frank 1965), and for four tetrahedrally
arranged vectors that generate the bcc lattice (Mackay 1977). The advantage of these
schemes is that the point symmetry of the set of vectors given by �E is the point
symmetry of the lattice. Mackay even discussed the set of reciprocal vectors asso-
ciated with the six fivefold axes of an icosahedron, long before the discovery of
quasicrystals. Of course, the four-index schemes for the hexagonal lattice and the
bcc lattice have a certain elegance, but they are not compulsory. For quasicrystals,
on the other hand, the redundancy of the set of generating vectors is the very essence
of the structure, and the M–P inverse assumes more importance.

} 3. Calculation of the Moore^Penrose inverse

There exist several algorithms that employ iterative schemes that converge on the
M–P inverse of a given matrix (Ben-Israel and Greville 1977). They are sensitive to
the choice of initial approximation. We give below a direct method that relies only
on an algorithm for diagonalizing a symmetric matrix.

As is easily verified by substitution into the equations (1),

E
�
¼ E

T
S
�, S ¼ EE

T:

At first sight, this may not seem very helpful; the problem of finding the M–P inverse
of a given matrix E has been replaced by the problem of finding the M–P inverse of S.
However, since S is symmetric, it can be brought to diagonal form; there is a matrix
L such that

D ¼ LSL
�1

is a diagonal matrix (and there are well-known algorithms for finding a matrix L).
The M–P inverse of a diagonal matrix is, obviously, obtained simply by replacing its
non-zero elements by their reciprocals. The M–P inverse of S is then

S
�
¼ LD

�
L
�1:

Note that, if E is n�N, S is n� n. We lose no generality by assuming that n4N
because if n>N the procedure can be applied to ET instead of to E. In many of the
cases that we shall encounter, S is just a multiple of the unit matrix and the M–P
inverse of E is just a multiple of ET.

} 4. Solutions of linear equations

Generalized inverses, in particular the M–P inverses, provide methods of obtain-
ing solutions of sets of linear equations, in cases where the system is underdeter-
mined or overdetermined. The following brief summary of the key formulae serves
to establish our notation.

3284 E. A. Lord



A set of n linear equations in N unknowns can be written as a matrix equation

x ¼ Ex:

The n�N matrix E and the n-component column x are given and the unknowns are
the components of the N-component column x. The equations are consistent if and
only if

px ¼ x ðequivalently, qx ¼ 0Þ

and the general solution is

x ¼ E
�
xþQz

where z is an arbitrary N-dimensional vector

q ¼ I � p, p ¼ EE
�,

Q ¼ I � P, P ¼ E
�
E:

The symmetric n� n matrices p and q and the symmetric N�N matrices P and Q

are projection matrices: they satisfy

q
2
¼ q, p

2
¼ p, pq ¼ qp,

Q
2
¼ Q, P

2
¼ P, PQ ¼ QP:

} 5. Z modules

Suppose that {ei}, i¼ 1, . . . ,N, is a set of N vectors in En. Then any set of N (real)
numbers xi determines a vector x in En and, conversely, a vector k determines a set
of real numbers ki:

x ¼ eix
i, ð2Þ

ki ¼ k � ei: ð3Þ

Let E denote the n�N matrix whose columns are the components of the vectors {ei}
referred to an orthonormal basis. Then the above expressions can be written in
matrix notation simply as

x ¼ Ex, ð4Þ

k ¼ kE: ð5Þ

The set L of all points x for which the numbers x are integers is a Z module. In
what follows we shall, for brevity, refer to Z modules simply as modules. A lattice is,
of course, a particular instance of a module, and equations (4) and (5) generalize the
concepts of lattice translations of reciprocal vectors. In general a module may consist
of a dense set of points. The projection method is essentially the imposition of a
selection rule that filters out a discrete point set (a ‘quasilattice’) from a module.
This will be taken up in } 8, but in the main we do not need it; the underlying module
suffices for an algebraic presentation of indexing schemes for quasicrystals.

If the rank of the matrix E is r, then all points of L will lie in an r-dimensional
subspace of En. Any r given points in Er that do not all lie in an r� 2 space determine
an r� 1 space in which they all lie: a hyperplane. Let one of the r given points be
chosen as the origin, and let X be the n� (r� 1) matrix, of rank r� 1, whose columns
are the position vectors x for the remaining r� 1 points. Then

k � zðI � XX
�
Þ ð6Þ
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is normal to the hyperplane of En whose intersection with the Er is the hyperplane
containing the r given points. (z is an arbitrary row vector and � denotes equality up
to an irrelevant scalar factor.) In particular, for r¼ 2 this gives

k � x
Te, e ¼

0 1
�1 0

� �
, ð7Þ

and for r¼ 3, for the planes parallel to the two lines through x and y, it gives

k ¼ x� y: ð8Þ

The N-tuple k given by equation (5) provides a set of N indices for a family of
hyperplanes. The index set k is not in general unique and, in general, a set of indices
obtained in this way will not be rational, but the zone law remains valid in its usual
form:

kx ¼ kix
i
¼ k1x

1
þ k2x

2
þ � � � þ kNx

N
¼ 0: ð9Þ

The ratios of the intercepts of the hyperplanes with the axes ei are the ratios of the
numbers l/ki.

Instead of defining the indices for the hyperplanes through equation (5), one can
define an alternative set of indices � required to satisfy

k ¼ �E
�: ð10Þ

The reciprocal vectors {ei} are then identified as those given (with reference to the
orthogonal coordinate system) by the rows of E*. The relation between vectors and
reciprocal vectors for a lattice ðe

i
� ej ¼ �ijÞ is generalized to

e
i
� ej ¼ Pi

j� ð11Þ

In terms of the indices � for the hyperplanes, the zone law is

�Px ¼ 0: ð12Þ

A key question is then: for what kinds of r-dimensional module can the (r� 1)-
dimensional submodules be indexed by sets � of integers?

} 6. Inflation rules

If P 6¼ I, the equations EP¼E (equivalently, EQ¼ 0) express the redundancy
of the set of reference vectors {ei}. It follows from equations (3) and (6) that
kP¼ �P¼ k, which expresses the corresponding redundancy of the set of indices k.
The components of k are not necessarily rational. Suppose, however, that they
belong to some algebraic number field F, and that there is an inflation rule
(Ostlund and Wright 1986) associated with an element l of F. That is, for every
point x of the module, lx is also a point of the module. There is then a matrix T with
integer elements, such that

ET ¼ lE:

Whenever a module possesses an inflation rule, integer indices can be assigned to
the reciprocal vectors. Let {l�} be a basis for F, that is every element of F is a linear
combination of the l� with rational coefficients, and write

ET� ¼ l�E:

If the components of the N-tuples k also belong to F, we can write k¼ k�l�.
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The components of the matrices T� and of the N-tuples k� are rational. Then,

�P ¼ kP ¼ k�l�P ¼ k�ðT�Þ
T

P:

Thus, for the hyperplanes specified by the index set k, a rational index set

� ¼ k�ðT�Þ
T

ð13Þ

(and hence an integer set) exists.

6.1. Examples
The module underlying the Penrose tiling patterns is generated by the matrix

E ¼
c0 c1 c2 c3 c4
s0 s1 s2 s3 s4

� �
¼ 1

2

2 �� �� �� ��
0 �� � �� ���

� �
,

where cm¼ cos (m�), sm¼ sin (m�), �¼ 2p/5, �¼ (1þ 51/2)/2, �¼ (1� 51/2)/2 and
�¼ (3� �)1/2. The five vectors are position vectors of the vertices of a regular
pentagon. They satisfy the inflation rule

�e1 ¼ �e3 � e4 & cycl:

(& cycl. will be used to denote a set of equations obtained from a given equation
by cyclic permutation of a set of labels, in this case (12345)). Thus, the module has
the inflation rule

�E ¼ ET, T ¼ �

0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

0
BBBB@

1
CCCCA ¼ cycl ð00�11�110Þ: ð14Þ

In E2, the ‘hyperplanes’ are lines. A set of five integer indices x determines the
two-component vector x¼Ex and hence its normal k¼ xTe. The set of indices
k¼ kE is of the form k¼ k(1)þ �k(2) with rational sets k(1) and k(2). (k(2) can be
expressed in terms of k(1)). We have �[k(1)þ �k(2)]¼ [k(1)þ �k(2)]T, from which
it follows that k(2)¼ k(1)T. In this example the algebraic field F is Q(51/2)). The
index set � for the line through the origin and point x is then

� ¼ kð1Þ þ kð2ÞT:

Since P� cycl(2� �� �� �� �), the zone law (12) splits, on equating coefficients of 1
and of �, into the pair of rational zone laws

2ð�1x
1
þ �2x

2
þ �3x

3
þ �4x

4
þ �5x

5
Þ � ð12Þ � ð23Þ � ð34Þ � ð45Þ � ð51Þ ¼ 0,

ð12Þ þ ð23Þ þ ð34Þ þ ð45Þ þ ð51Þ � ð13Þ � ð24Þ � ð35Þ � ð41Þ � ð52Þ ¼ 0,

where we have used an abridged notation: (12) for instance denotes �1x
2
þ �2x

1.
A less simple example is the module in E2 with sevenfold symmetry:

E �
c0 c1 c2 c3 c4 c5 c6
s0 s1 s2 s3 s4 s5 s6

� �
,

where cm¼ cos (m�), sm¼ sin (m�) and �¼ 2�/7. Although sevenfold symmetry has
never been found to occur in quasicrystals, this case has some intrinsic interest
arising from the fact that the inflation factor is a cubic rather than a quadratic
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irrational. The vectors ei, i¼ 1, . . . , 7, given by the columns of E can be represented
by the complex numbers !m, where ! is the seventh root of unity exp (i�), which
satisfies !7

� 1¼ 0 and

1þ !1
þ !2

þ !3
þ !4

þ !5
þ !6

¼ 0: ð15Þ

The geometry of the regular heptagon suggests three obvious inflation rules; the
vectors ei satisfy

l1e1 ¼ e2 þ e7 & cycl:,

l2e1 ¼ e3 þ e6 & cycl:,

l3e1 ¼ e4 þ e5 & cycl:,

where

l1 ¼ 2c1 ¼ 2c6, l2 ¼ 2c2 ¼ 2c5, l3 ¼ 2c3 ¼ 2c4:

It is obvious from the real part of equation (15) that the three inflation factors are not
independent; they satisfy 1þ l1þ l2þ l3¼ 0. They are also the roots of the cubic
equation

l3 þ l2 � 2l� 1 ¼ 0

(verified by multiplying out the expression (x�!�!6)(x�!2
�!5)(x�!3

�!4)).
Writing l¼ l1, well-known trigonometrical formulae give

l2 ¼ l2 � 2, l3 ¼ �l2 � l� 1:

A 7-tuple x of integers determines the line of points of the module, through
x�Ex, normal to k and hence determines a k� kE, whose components are quad-
ratics in l with integer coefficients:

k � kð0Þ þ kð1Þlþ kð2Þl2

(where k(0), k(1) and k(2) are 7-tuples with integer components).
Hence, from equation (13), an integer set of indices for the ‘reciprocal vector’ k is

� � kð0Þ þ kð1ÞT1
þ kð2ÞT2, T ¼ cycl ð010001Þ:

P � cycl ð 2 l1 l2 l3 l3 l2 l1Þ

¼ cycl ð 2 0 �2 1 1 �2 0 Þ þ l cycl ð 0 1 0 �1 �1 0 1Þ

þ l2 cycl ð 0 0 1 �1 �1 1 0Þ:

On equating coefficients of 1, l and l2, we obtain a set of three rational zone laws.
These results are generalizable to modules in E2 with N-fold symmetry generated

by N vectors directed to the vertices of a regular N-gon. The numbers lm¼

2 cos (m�), with �¼ 2�/N, are inflation factors. Now, cm¼ cos (m�) can be expressed
as a polynomial of order m in c¼ c1, with integer coefficients, and sm¼ sin (m�) can
be expressed as s (¼ s1) times a polynomial of order m� 1 in c, with integer coeffi-
cients. This is most readily seen by separating the real and imaginary parts of the
binomial expansion of

exp ðim�Þ ¼ cm þ ism ¼ ðcþ isÞm:
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This gives

cm ¼
X½mi2�

r¼0

cm�2r
ð�Þ

r
ð1� c2Þr

m

2r

� �
,

sm ¼ s
X½mj2�

r¼0

cm�2r�1
ð�Þ

r
ð1� c2Þr

m

2rþ 1

� �
:

[mi2] denotes m/2 or ðm� 1Þ=2 accordingly as m is even or odd.
It follows that, for a given set of integer indices x, x¼Ex has the form [a, bs]

where a and b are polynomials in l with integer coefficients. The normal to x is
indexed by an N-tuple

k � xTE
TeE

with components that are polynomials in l with integer coefficients. The integer
index set � is then given by equation (13).

We saw in the N¼ 7 example that l was in this case a root of a cubic equation.
It was proved by Gauss that cos (2�/N) is a root of a quadratic if and only if the odd
prime factors of N are all different and all of the form 22

n

þ 1. In these cases ETeE

is linear in l and we have

� ¼ xTA, A ¼ Að0Þ þ Að1ÞT, Að0Þ þ Að1Þl ¼ E
TeE,

where A(0) and A(1) are rational matrices. It is a curious fact that the smaller N
values with this property, 3, 4, 5, 6, 8, 10, 12, are just those corresponding to the
symmetries of crystals and quasicrystals.

The standard icosahedral module in E3 is generated by six base vectors directed
along the six fivefold axes of an icosahedron. They can be taken to be the columns of

E ¼

1 0 � 0 � �1
� 1 0 �1 0 �
0 � 1 � �1 0

0
@

1
A: ð16Þ

If we sum the position vectors of the five vertices of an icosahedron nearest to a
vertex e, we obtain 51/2e. This corresponds to the inflation rule

T ¼
A B

B �A

� �
, l ¼ 51=2,

where A¼ cycl (0 1 1) and B¼ cycl (� 1 1 1). The projection matrix P turns out to be

P ¼
1

2� 51=2
T þ I 51=2
� �

:

Splitting the index sets x and � into pairs of triplets x¼ [x1, x2], �¼ (�1, �2), we obtain
the pair of rational zone laws

�x ¼ �1x
1
þ �2x

2
¼ 0,

�1Ax1 � �2Ax2 þ �1Bx2 þ �2Bx
1
¼ 0:

Loreto et al. (1990) have proposed approximate indexing schemes for icosahedral
quasicrystals, in which � in the expression k¼ aþ �b is replaced by a Fibonacci
approximant (ratio of two successive terms of the Fibonacci sequence) to obtain
sets of three integer indices that give a close approximation to the irrational indices.
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Loreto et al. (1993) have also employed the zonal criterion extensively, in the context
of icosahedral quasicrystals.

The standard indexing scheme for reciprocal vectors of icosahedral phases
(Cahn et al. 1986) employs the six integers a1, a2, a3, b1, b2 and b3 in the expression
k¼ aþ �b. They are conventionally written in the format

a1
b1

,
a2
b2

,
a3
b3

� �
:

} 7. Symmetry

The space group classification of periodic structures can be extended to aperiodic
structures. The relevant space groups refer to spaces of higher dimension than the
space in which the aperiodic structure resides (Janner and Janssen 1980a,b,
Alexander 1986). (Janner and Janssen already employed higher dimensional methods
in the context of incommensurate crystal phases, before the advent of quasicrystals.)
Janssen (1986) explored the symmetry properties of quasicrystals and aperiodic til-
ings in terms of the theory of group representations (Boerner 1963, Burrow 1965).
Here, we consider only the point-group symmetries of modules and demonstrate, by
means of a few examples, how a module with a particular point-group symmetry can
be generated (Duneau and Katz 1985, Katz and Duneau 1986).

The modules in E2 discussed above may be called, for convenience, the CN

modules. The matrix S¼EET for all these cases is a multiple of the unit 2� 2 matrix,
so that E

� is, apart from a trivial factor, just the transpose of E. The ‘reciprocal
vectors’ ei differ only in length from the module base vectors ei. This a very general
feature of a set of vectors ei ‘generated by a point group’. If ei are N vectors in En

obtained from a single vector v by the action of a representation ! of a point group
G, we shall call the module a G module. The examples that we have used in previous
sections are CN modules. If v is ‘special’ in the sense that there is a non-trivial
subgroup H that leaves v fixed, we shall call the resulting module a G–H module;
the number of distinct base vectors

ei ¼ !ðgiÞv

is then N¼ |G|/|H|, one corresponding to each coset of the coset space G/H.

7.1. Example 1
The tetrahedral rotation group A4. Its twelve elements are as follows:

e, a1 ¼ ð324Þ, a2 ¼ ð134Þ, a3 ¼ ð214Þ,

a21 ¼ ð234Þ, a22 ¼ ð314Þ, a23 ¼ ð124Þ,

c1 ¼ ð14Þð23Þ, c2 ¼ ð24Þð31Þ, c3 ¼ ð34Þð12Þ:

a4 ¼ ð123Þ,

a24 ¼ ð132Þ,

The group is generated by c1 and a4. The three-dimensional real representation arises
when the abstract group is realized as the rotation group of the tetrahedron. We can
choose

c1 ¼

1 0 0

0 �1 0

0 0 �1

0
BB@

1
CCA, a4 ¼

0 1 0

0 0 1

1 0 0

0
BB@

1
CCA
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(i.e. twofold rotation about [100] and threefold rotation about [111]). If we choose
v¼ [111], then H is C3 and the four cosets are

fe, a4, a
2
4g, fa1, a

2
3, 	2g, fa2, a

2
1, 	3g, fa3, a

2
2, 	1g:

Four suitable coset representatives are

e ¼

1

1

1

0
B@

1
CA, c1 ¼

1

�1

�1

0
B@

1
CA,

c2 ¼

�1

1

�1

0
B@

1
CA, c3 ¼

�1

�1

1

0
B@

1
CA:

Operating on v with these four transformations we obtain the basis {ei}, i¼ 1, . . . , 4,
the columns of the matrix

E ¼

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

0
BB@

1
CCA:

The rows are orthonormal if we introduce a normalization factor 1
2
. Suppose, alter-

natively, that we choose v¼ [100]. Then H¼C2 and we have six cosets

fe, 	1g, fa1, a3g, fa2, a4g, a21, a
2
2

� �
, a23, a

2
4

� �
, f	2, 	3g:

Operating on v with the six coset representatives, e, a1, a4, a
2
1, a

2
3, c2, we obtain

the basis {ei}, i¼ 1, . . . , 6, given by the columns of the matrix

E ¼

1 0 0 0 0 �1

0 0 0 �1 1 0

0 �1 1 0 0 0

0
BB@

1
CCA:

Introducing the normalization factor 1/21/2, we again obtain a matrix E with
orthonormal rows.

7.2. Example 2
The icosahedral rotation group, of order 60, is generated by

b ¼

0 1 0

0 0 1

1 0 0

0
BB@

1
CCA, c ¼ 1

2

�� 1 ��

1 �� �

�� � �1

0
BB@

1
CCA ð17Þ

(i.e. a threefold rotation about [111] and a twofold rotation about [� � � 1]; �¼ �	
is a fivefold rotation about [1 � 0]). If v is a general vector, we obtain 60 vectors ei.
By choosing v to be at a vertex, or at a face centre, or at the midpoint of an edge of
the icosahedron, we have H¼C5 giving 12 vectors, H¼C3 giving 20 vectors, or
H¼C2 giving 30 vectors, respectively. In each of these three cases the vectors
occur in pairs � ei; so we obtain three kinds of icosahedral module, corresponding
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to generating matrices E that are 3� 6, 3� 10 or 3� 15, respectively. The 3� 6
matrix is given by equation (16). It generates the module underlying the standard
icosahedral quasilattice: the tiling of E3 by two rhombohedral units (Kramer and
Neri 1984, Duneau and Katz 1985, Levine and Steinhardt 1985, Katz and Duneau
1986, Socolar and Steinhardt 1986).

The important relation EET
¼ I that we noted for the CN modules is valid for

any G module for which the representation ! of G that generates its set of base
vectors is irreducible. This follows from the property

X
g2G

G�
�ðgÞG

�
	ðg

�1
Þ ¼

jGj

n
��� �

�
	 ð18Þ

of an n-dimensional irreducible representation ! of a finite group G (Boerner 1963,
Burrow 1965). The M–P inverse of E is then just the transpose of E. The ‘reciprocal
module’ associated with the G–H module L is then L itself (apart from a possible
scaling factor).

} 8. Projection

The concept of a ‘quasilattice’ has played a prominent role in the theoretical
understanding of quasicrystal structure. A quasilattice is essentially a discrete set of
points filtered out from a Z module through the imposition of a selection rule. In the
standard projection method (Kramer and Neri 1984, Elser 1985, Katz and Duneau
1986) a hypercubic lattice in En is projected to two orthogonal subspaces Ek and E?,
giving a module in each. The selection is imposed by choosing a ‘window’ region
in E? (Cahn and Gratias 1986). The quasilattice consists of the projected images in
Ek of the selected points.

EET
¼ I means that the rows of E are orthonormal. N� n additional rows can be

introduced, so that E is extended to an orthogonal N�N matrix

R ¼
E

F

� �
, RR

T
¼ I, ð19Þ

that generates a primitive hypercubic lattice in EN. Therefore, whenever EET
� I, the

module generated by E is the image, under an orthogonal projection, of a hypercubic
lattice in EN on to an n-dimensional subspace Ek. The (N� n)-dimensional subspace
E? orthogonal to it contains a module generated by F. This observation gives rise to
the projection method for generating quasilattices.

There are an infinite number of matrices F that will extend E to an orthogonal
matrix R. They are related to each other by rotations in E?.

In this prescription the projection matrices that project EN to Ek and E? are,
obviously, of the form I 0

0 0

� �
and 0 0

0 I

� �
. The hypercubic lattice is tilted, by the rotation

R, relative to the coordinate axes in EN.
In an alternative but equivalent projection method (Conway and Knowles 1986)

the hypercubic lattice is aligned with the coordinate axes, but the pair of subspaces
Ek and E? are tilted. Observe that EET

¼ I implies that P¼ETE, so that the vectors pi
in EN given by the columns of P have the same lengths and angle relationships as the
En vectors ei. That is,

P
T

P ¼ E
T

E,
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or pi � pj¼ ei � ej. We can therefore identify the En spanned by the vectors pi with Ek.
The space E? is then similarly spanned by the columns of Q. The orthogonality of
these two subspaces is a consequence of PQ¼ 0 (i.e. pi � qj¼ 0). In this approach the
projection of the hypercubic lattice (generated by I) is effected by the projection
matrices P and Q.

The problem of constructing a matrix F that extends E to a square orthogonal
matrix R is usually solved by resorting to the theory of group representations
(Jannsen 1986, Boerner 1963, Burrow 1965). Suppose that e is a general vector, so
that N¼ |G|. An N-dimensional matrix representation of G is the regular representa-
tion, in which each element g is represented by the permutation matrix obtained by
permuting the set of all elements of G by multiplying them by g.

The number of inequivalent irreducible representations of a finite group G is
equal to the number k of equivalence classes of G (two elements g1 and g2 are
‘equivalent’ if there is an element g such that gg1g

�1
¼ g2). The regular representation

is equivalent to a direct sum of irreducible representations and contains each
n1-dimensional irreducible representation just n1 times. Correspondingly,

n1 þ n2 þ � � � þ nk ¼ jGj: ð20Þ

8.1. Example 1
The irreducible representations of the icosahedral rotation group A5 are two

inequivalent three-dimensional representations, a four-dimensional representation,
a five-dimensional representation and the trivial one-dimensional representation.
Equation (20) becomes

12 þ 32 þ 32 þ 42 þ 52 ¼ 60:

The two three-dimensional representations are related to each other by the inter-
change of � and � in their matrices (51/2!� 51/2). Taking e¼ [1 � 0], H¼C5 and the
three-dimensional representation given by equation (17), we obtain the matrix (16).
Introducing a normalization factor to give the rows unit length, we have

E ¼ ð��21=2Þ�1

1 0 � 0 � �1

� 1 0 �1 0 �

0 � 1 � �1 0

0
BB@

1
CCA:

For the other three-dimensional representation we can take e¼ [1 � 0], which gives
us

F ¼ ð�21=2Þ�1

1 0 � 0 � �1

� 1 0 �1 0 �

0 � 1 � �1 0

0
BBB@

1
CCCA

¼ ð��21=2Þ

� 0 �1 0 �1 ��

�1 � 0 �� 0 �1

0 �1 � �1 �� 0

0
BBB@

1
CCCA:
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Observe that the rows of F are orthogonal to those of E. The hypercubic lattice from
which the standard icosahedral quasilattice can be projected is thus generated by
the resulting orthogonal matrix

R ¼
E

F

 !
¼ ð��21=2Þ�1

1 0 � 0 � �1

� 1 0 �1 0 �

0 � 1 � �1 0

� 0 �1 0 �1 ��

�1 � 0 �� 0 �1

0 �1 � �1 �� 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð21Þ

The splitting of E6 into two three-dimensional spaces corresponds to the
existence of a real six-dimensional reducible representation of A5. The same method
for the other two kinds of icosahedral module corresponds to a real ten-dimensional
representation and a real fifteen-dimensional representation, with decompositions
10 ¼ 4� 3� 30 and 15 ¼ 5� 4� 3� 30.

The above example illustrates how an orthogonal N�N matrix R can be con-
structed out of the orthogonal representations of a group of order N. The orthogon-
ality of the rows of a matrix R constructed in this way is guaranteed by equation (20)
and the property X

g2G

G�
�ðgÞG

0b
aðgÞ ¼ 0 ð22Þ

of any pair of inequivalent irreducible representations of a group (Boerner 1963,
Burrow 1965). It has been shown (Rokhsar et al. 1985) that there are just three
quasilattices in E3 obtainable by projection of a lattice in E6, namely from the
primitive, base-centred and face-centred hypercubic lattices.

We are here interested only in real matrices. However, any complex representa-
tion ! is equivalent to a unitary representation (!

T
¼ !�1) and, from the matrices of

an n-dimensional unitary representation, one can construct a 2n-dimensional real
orthogonal representation, by simply splitting every matrix ! into its real and
imaginary parts: !¼Aþ iB. Then

A B

�B A

� �

is orthogonal. The complex conjugate representation ! gives a real 2n-dimensional
representation equivalent to that given by !:

S
A B

�B A

 !
S
�1

¼
A �B

B A

 !
, S ¼

0 1

1 0

 !
:

8.2. Example 2
The irreducible representations of CN are one dimensional. There are N of them.

If N is odd, one of them (the trivial representation) is real and, if N is even, two of
them are real. The rest are associated in conjugate complex pairs. Specifically, if g
is the generator of the abstract group CN (gN¼ e), then g can be represented by a
power of the Nth root of unity !¼ exp (i�), �¼ 2p/N. Take, for instance, the case
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N¼ 5. The five representations !i (i¼ 1, . . . , 5) are given by taking g¼!i. Each
pair of conjugate complex representations (!1, !4 or !2, !3) combines to give a
real two-dimensional representation of the form

g ¼
c s
�s c

� �
,

one of them by taking c¼ cos (2�/5)¼ �/2 and s¼ sin (2�/5)¼ ��/2. We obtain two
orthogonal rows from the action of this representation on the vector e¼ [1, 0].
We obtain two more from the other two-dimensional representation, in which
c¼ cos (4�/5)¼� �/2 and s¼ sin (4�/5)¼ �/2. A fifth row comes from the trivial
one-dimensional representation. Normalizing these rows to give them unit length
gives us the orthogonal 5� 5 matrix

R ¼
1

101=2

2 �� �� �� ��

0 �� � �� ���

2 �� �� �� ��

0 � ��� �� �

21=2 21=2 21=2 21=2 21=2

0
BBBBBB@

1
CCCCCCA
:

This generates a hypercubic lattice in E5. The first two rows give the generating
matrix for the C5 module in Ek and the last three give a lattice in the three-dimen-
sional perpendicular space E. If R and M are orthogonal N-dimensional matrices,
then the 2N-dimensional matrix

R
0
¼

1

21=2
R MR

�M
T

R R

� �

is orthogonal. This observation can be exploited to construct modules by projection
of hypercubic lattices on to subspaces. Let us consider a simple example in which
R¼ I2, M ¼ ð1=21=2Þ 1 1

�1 1

� �
. R generates the square lattice in the plane and M is the

matrix for a rotation through 45	:

R
0
¼

1

21=2

21=2 0 1 1

0 21=2 �1 1

1 1 21=2 0

�1 1 0 21=2

0
BBB@

1
CCCA

generates a hypercubic lattice in E4. Splitting this R
0 into two 2� 4 matrices E and F

according to equation (19) yields the prescription for obtaining the C8 module by the
projection method.

For a less trivial example, let R be the 5� 5 matrix

1

101=2

2 �� �� �� ��

0 �� � �� ���

21=2 21=2 21=2 21=2 21=2

2 �� �� �� ��

0 � ��� �� ��

0
BBBBBB@

1
CCCCCCA
:

The first three rows give a 3� 5 matrix that generates a C5 module in E3. If M2
¼ I,

then R
0 gives a hypercubic lattice in E10 that projects to a D5 module in E3. There is a
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variety of different choices for M that give rise to modules in E3 with various point
symmetries.

If the matrix F in equation (19) is replaced by a rational matrix, the projection
method gives rise to a periodic structure in Ek. Linear dependence relations among
the rows of F (with integer coefficients) correspond to periods of the structure in Ek.
This underlies the theoretical treatment of approximants of quasilattices and quasi-
crystals by projection methods. Orthorhombic approximants to the standard icosa-
hedral quasilattice, for example, are obtained by replacing � in each of the last three
rows of equation (21) by Fibonacci approximants p=qð Þ where p and q are successive
terms of the Fibonacci sequence. Taking out irrelevant overall factors from the
resulting rows gives

F ¼

p1 0 �q1 0 �q1 �p1

�q2 p2 0 �p2 0 �q2

0 �q3 p3 �q3 �p3 0

0
B@

1
CA:

Other types of periodic approximant arise from different choices of the rationalized F

(Ishii 1991). The problem of relating the six-integer indexing scheme of the module to
the ordinary crystallographic three-integer scheme appropriate to the approximant
has been investigated by Quiquandon et al. (1999).

} 9. Layered modules

The reducible three-dimensional representation of C5, applied to a general
vector e, gives five vectors that do not all lie in a plane. Without loss of generality
we may take them to be given by the columns of

E �

2 �� �� �� ��

0 �� � �� ���

z z z z z

0
B@

1
CA: ð23Þ

(Here and in what follows the symbol � will denote equality to within a normaliza-
tion factor). These five vectors form a pyramidal configuration. An indexing scheme
for decagonal quasicrystals based on this module has been proposed (Ho 1986).
The three-dimensional module generated by this matrix consists of layers of a
two-dimensional E2 submodule and is periodic along the z axis with period 5z and
has fivefold screw axes. Its point symmetry is �55m. It is quite different from the direct
sum module generated by

E �

2 �� �� �� �� 0

0 �� � �� ��� 0

0 0 0 0 0 z

0
B@

1
CA, ð24Þ

which consists of layers related by translation along the z axis and has period z. Its
points symmetry is 10/mmm. The indexing scheme for decagonal quasicrystals that
this module provides (Choy et al. 1988, Fitz Gerald et al. 1988) has recently been
successfully exploited (Singh and Ranaganathan 1996, Ranganathan et al. 1997).

The analogues of these two modules for N¼ 3 are the rhombohedral trigonal and
the hexagonal Bravais lattices, respectively.
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} 10. The rank of a module

A vector x¼Ex is not, in general, associated with a unique set of indices x. Since
EQ¼ 0, x and xþQz label the same point x. (We are, of course, concerned only
with linear combinations Qz of the columns of Q that have integer components.) This
redundancy can be removed by imposing conditions on the index sets x. Consider for
example the C3 module which is simply the plane hexagonal lattice. We have

E ¼ 1
2

2 �1 �1

0 31=2 �31=2

 !
:

The lattice points in the plane are specified by index sets x¼ [x1, x2, x3]. For
all integers m, [x1þm, x2þm, x3þm] all specify the same lattice point x¼Ex.
This redundancy is removed by requiring that x1þ x2þ x3¼ 0. The reciprocal indices
k necessarily satisfy k1þ k2þ k3¼ 0 because of the identify kQ¼ 0. In this example,
k is rational; so we can take �¼ k. (There are only ‘trivial’ inflation rules; inflation
by integers; there is an inflation matrix T¼ cycl (0� 1� 1) with ‘inflation factor’
l¼ 1.) This example is, of course, Frank’s scheme for indexing the hexagonal
lattices. An alternative response to the redundancy is to reduce the number of
base vectors.

The rank of a module generated by a matrix E (not to be confused with the rank
of the matrix E) is the smallest number of base vectors that will generate it. For
example, the CN modules can be generated by fewer than N vectors. The identity
e1þ e2þ e3þ � � � þ eN¼ 0 shows immediately that at most N� 1 vectors are needed.
If N is even, the module can be generated by only N/2 vectors, because e0¼� eN/2

& cycl. (here, the subscript labels are integers modulo N). If N is divisible by 3,
we have e0þ eN/3þ e2N/3¼ 0 & cycl. These obvious geometrical properties of regular
N-gons enable us to deduce the following values for the ranks of the CN-modules:

N odd, not divisible by 3: rank N � 1,

N odd, divisible by 3: rank 2N=3,

N even, not divisible by 4: the CN module is the same as the CN=2 module,

N divisible by 4 but not by 3: rank N=2,

N divisible by 12: rank N=3:

A module of rank r generated by an n�N matrix E can equally well be generated
by an n� r matrix E

0. The four-index scheme for the planar C5 module (Ostlund and
Wright 1986) has been adopted by many researchers, in spite of the disadvantage
that the fivefold symmetry is not self-evident in the notation.

The columns of E
0 are just r of the columns of E, and the remaining columns of

E are linear combinations of them with integer coefficients. This relationship can
be written E¼E

0
J, where J is r�N. Similarly, there will be a reduced matrix E

00 and
an N� r matrix J

0 satisfying E
�
¼ J0E

00. One can therefore employ reduced index sets
x0 and �0, satisfying x0 ¼ Jx, �0 ¼ �J

0. In terms of these reduced index sets, the zone
law is

�0P0x0 ¼ 0, P ¼ E00E0:
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10.1. Examples

C5: E
0
¼ 1

2

�� �� �� ��

�� � �� ���

� �
, J ¼ ðJ

0
Þ
T
¼

�1 1 0 0 0

�1 0 1 0 0

�1 0 0 1 0

�1 0 0 0 1

0
BBB@

1
CCCA:

Hence

P
0
�

2 �� �� ��

�� 2 �� ��

�� �� 2 ��

�� �� �� 2

0
BBB@

1
CCCA,

giving the rational pair of zone laws

2ð�1x
1
þ �2x

2
þ �3x

3
þ �4x

4
Þ � ð12Þ � ð23Þ � ð34Þ ¼ 0,

ð12Þ þ ð23Þ þ ð34Þ � ð13Þ � ð34Þ � ð41Þ ¼ 0:

C8: E
0
¼ 1

2

2 21=2 0 �21=2

0 21=2 2 21=2

0
@

1
A, J ¼ ðJ

0
Þ
T
¼ ðI4 �I4Þ:

P
0
¼ 1

4

2 21=2 0 �21=2

21=2 2 21=2 0

0 21=2 2 21=2

�21=2 0 21=2 2

0
BBBBB@

1
CCCCCA,

giving the rational pair of zone laws

�1x
1
þ �2x

2
þ �3x

3
þ �4x

4
¼ 0,

ð12Þ þ ð23Þ þ ð34Þ � ð14Þ ¼ 0:

C12: E
0
�

1 31=2 31=2 1

�31=2 �1 1 31=2

 !
,

J ¼ ðJ
0
Þ
T
¼ ðK �KÞ, K ¼

1 0 0 0 �1 0

0 1 0 �1 0 �1

0 0 1 1 0 0

1 0 0 0 0 0

0
BBBBB@

1
CCCCCA,

P
0
¼ 1

4

2 31=2 0 �1

31=2 2 1 0

0 1 2 31=2

�1 0 31=2 2

0
BBBBB@

1
CCCCCA,
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giving the rational pair of zone laws

2ð�1x
1
þ �2x

2
þ �3x

3
þ �4x

4
Þ þ ð23Þ � ð14Þ ¼ 0,

ð12Þ þ ð34Þ ¼ 0:

Scaling laws for these three cases are

C5: T ¼

0 0 �1 �1

1 1 1 0

0 1 1 1

�1 �1 0 0

0
BBBBB@

1
CCCCCA, l ¼ �,

C8: T ¼

0 1 0 �1

1 0 1 0

0 1 0 1

�1 0 1 0

0
BBBBB@

1
CCCCCA, l ¼ 21=2,

C12: T ¼

0 2 1 0

2 0 0 �1

�1 0 0 2

0 1 2 0

0
BBBBB@

1
CCCCCA; l ¼ 31=2:

As we have noted, three kinds of icosahedral module can be identified, corre-
sponding to N¼ 6, 10 and 15. All three icosahedral modules have rank six. Consider
the 3� 10 generating matrix

E �

�� � 0 1 �1 1 0 � � 1

0 �� � 1 1 �1 � 0 � 1

� 0 �� �1 1 1 � � 0 1

0
B@

1
CA

(in which the columns correspond to the threefold axes of an icosahedron). For
simplicity we denote the vectors ei simply by their labels. They satisfy the identities

1 ¼ 2þ 5� 7 ¼ 3� 5þ 9 & cycl:,

4 ¼ �1þ 3þ 9 ¼ �5� 6þ 10 & cycl:,

7 ¼ �1þ 2þ 5 ¼ �8� 9þ 10 & cycl:,

10 ¼ 7þ 8þ 9:

(& cycl. in this context denotes the set of relations obtained by applying the permu-
tation (123)(456)(789).) From these relations we select the four relations

7 ¼ �1þ 2þ 5, 8 ¼ �2þ 3þ 6, 9 ¼ �3þ 1þ 4, 10 ¼ 4þ 5þ 6:
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That is, all ten vectors of the module are linear combinations, with integer coeffi-
cients, of the six vectors e1, e2, e3, e4, e5 and e6, and we have the reduced generating
matrix

E �

�� � 0 1 �1 1

0 �� � 1 1 �1

� 0 �� �1 1 1

0
B@

1
CA:

The three rows are (apart from a normalization factor) orthonormal. Hence the
module is a projection of a hypercubic lattice in E6.

For the N¼ 15 case, we can take

E ¼

� � � � 1 1 1 1 �� �� �� �� 2 0 0

1 1 �1 �1 �� �� � � � � �� �� 0 2 0

� �� �� � �� � � �� �1 1 1 �1 0 0 2

0
B@

1
CA

(corresponding to the twofold axes of an icosahedron). The 15 vectors ei satisfy

1 ¼ 18þ 10, 2 ¼ 7þ 9, 3 ¼ 6þ 12, 4 ¼ 5þ 11,

13 ¼ 5þ 7 ¼ 6þ 8, 14 ¼ 1� 4 ¼ 2� 3, 15 ¼ 10� 9 ¼ 11� 12:

It follows from these identities that all 15 vectors are linear combinations, with
integer coefficients, of only six of them: choosing {e2, e6, e10, e13, e14, e15} as the
linearly independent basis, we have

8

�3

�9

1

�12

7

�4

5

11

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼

0 �1 0 1 0 0

�1 0 0 0 1 0

0 0 �1 0 0 1

0 �1 1 1 0 0

�1 1 0 0 1 0

1 0 �1 0 0 1

0 1 �1 �1 1 0

�1 0 1 1 0 �1

1 �1 0 0 �1 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

2

6

10

13

14

15

0
BBBBBBBB@

1
CCCCCCCCA
:

The reduced matrix E in this case has orthogonal rows; the module generated by the
six vectors is not in this case a projection from a six-dimensional hypercubic lattice.

} 11. The decagonal modules

Consider again the module generated by equation (24):

E ¼

2 �� �� �� �� 0

0 �� � �� ��� 0

0 0 0 0 0 z

0
B@

1
CA:

There is no inflation rule; the � inflation rule of the layers is not compatible with the
periodicity in the z direction, but the planes of the module can nevertheless be
indexed by six integers. How this comes about is outlined below.

Take any two points x¼Ex and y¼Ey, determining two zone axes and the
plane containing them, with normal k¼ x� y. The (irrational) index set k¼ kE is,
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apart from an overall factor, of the form aþ b�, in which a and b are sextuples of
integers. The important point to note is that the arbitrary number z is factored out at
this stage. Multiplying k by � (a6þ b6)þ b6�, we obtain a k with its sixth component
rational.

The projection matrix P¼E
�
E is, in terms of the corresponding 5� 5 matrix

P
0
¼ 1

5
cycl ð2� � � � � � � �Þ.

P ¼
P
0 0
0 1

� �
:

Thus, we obtain a set � of six integers, �6¼ k6¼ a6 and �i ¼ ai þ bjT
j
i, i¼ 1, . . . , 5

(T is the inflation matrix (14) for the two-dimensional C5 module). The zone law is
(Singh and Ranganathan 1996)

5�6x
6
þ 2ð�1x

1
þ �2x

2
þ �3x

3
þ �4x

4
þ �5x

5
Þ

� ð12Þ � ð23Þ � ð34Þ � ð45Þ � ð51Þ

þ �½ð12Þ þ ð23Þ þ ð34Þ þ ð45Þ þ ð51Þ � ð13Þ � ð24Þ � ð35Þ � ð41Þ � ð52Þ� ¼ 0,

ð25Þ

giving a pair of rational zone laws.

11.1. Example
For the two points of the decagonal module indexed by x¼ (110000) and

y¼ (100001) we find that x� [2� �, ��, 0], y� [2, 0, 	] and hence k� (z��, z(�� 2),
� 2��). Then

k ¼ kE � ð1 �1 0 0 0 �1Þ þ �ð0 0�1 0 1 0Þ

(b6 already happens to be zero). Now, (0 0 �1 0 1) T¼ (1 �1 �1 0 1 0); so we obtain

� ¼ ð1 �1 0 0 0 �1Þ þ ð1 �1 �1 0 1 0Þ ¼ ð2 �2 �1 0 1 �1Þ:

} 12. Redundancy of indices

An indexing scheme for a module of rank r that employs index sets with more
than r indices has, a priori, a built-in redundancy; the vectors x and the reciprocal
vectors k do not possess unique sets of integer indices. Because EQ¼ 0 and QE*¼ 0,
x and k with rational index sets x and � such that

x ¼ Ex, k ¼ �E
�,

are also associated with the index sets xþ j and �þ j 0 where j and j 0 are any rational
sets that are linear combinations of the columns or rows of Q.

As we have seen, this redundancy is absent in a scheme obtained from a reduced
matrix E having only r columns. The use of a four-index scheme for the C5 module in
E2 is quite common in the literature. The disadvantage of such a scheme is the loss of
the straightforward role of the M–P inverse E

� as the generating matrix for the
reciprocal module, and the fact that the point symmetries of the module act on
the index sets in a clumsy and unnatural way.

An alternative approach to the redundancy is to impose restrictions on the index
sets, without reducing the number of indices. A completely general statement of this
method is the following. Let J be an N� (N� r) rational matrix whose columns are
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N� r linear combinations of the rows of Q. Then, for any arbitrary rational index
sets x and �, we can apply the transformations

x ! x� JJ
�x, ð26Þ

� ! �� �JJ
�: ð27Þ

We obtain, then, a unique set of indices for every vector x and every reciprocal vector
k that satisfies

J
�x ¼ 0,

�J ¼ 0:

12.1. Example 1
For a hexagonal lattice in E3.

E �

2 �1 �1 0

0 31=2 �31=2 0

0 0 0 z

0
B@

1
CA:

In this case there is (apart from an overall factor) only one rational combination of
the rows of Q, namely j¼ [1110], and the transformations (26) and (27) become

x ! x�
jð jTxÞ

ð jTjÞ
, ð28Þ

� ! ��
ð�jÞ jT

ð jTjÞ
: ð29Þ

The restricted index sets satisfy jTx¼ 0 and �j¼ 0, i.e.,

x1 þ x2 þ x3 ¼ 0, �1 þ �2 þ �3 ¼ 0:

This is, of course, Frank’s scheme for indexing hexagonal lattices. For purposes
of illustration, consider the two arbitrary index sets x¼ [1101] and y¼ [2100]. The
transformation (28) gives

x ! ½1101� � 2
3
½1110� ¼ 1

3
½11�223� � ½11�223�,

y ! ½2100� � ½1110� ¼ ½10�110�

(which satisfy x1þ x2þ x3¼ 0 and y1þ y2þ y3¼ 0). The corresponding zone axes
are x� [1, 31/2, z], y� [3, 31/2, 0] and hence k¼ x� y� (� 31/2z, 3z,� 2� 31/2).
Therefore � ¼ k ¼ kE � ð�112�11�11Þ (which satisfies �1þ �2þ �3¼ 0 necessarily, because,
by definition, kQ¼ 0).

An analogous treatment can be applied to Fitz Gerald’s scheme for the layered
decagonal module, for which

E �

2 �� �� �� �� 0

0 �� � �� ��� 0

0 0 0 0 0 z

0
B@

1
CA:

Again, there is (apart from an overall factor) only one rational linear combination of
the columns of Q: j¼ [111110]. The transformations (28) and (29) applied to
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arbitrary sets of integers x and � give rise to unique labels for the vectors x and k that
satisfy

x1 þ x2 þ x3 þ x4 þ x5 ¼ 0, �1 þ �2 þ �3 þ �4 þ �5 ¼ 0:

Note that the indices � defined from equation (14) with the aid of the � inflation rule
of the C5 module necessarily satisfy this condition, because kQ¼ 0 for the (irrational)
index sets k¼ kE, and so kj¼ 0.

12.2. Example 2
Consider the index sets x¼ [110100] and y¼ [210001]. Application of equation

(28) converts them to x0 � ½22�33230� and y0 � ½33�22�22�225�. The directions referred to by
these index sets are x¼Ex� (1,���, 0) and y¼Ey� (�2,��, 0). k¼ x� y¼ [��, 1, 0]
is perpendicular to both. Its corresponding (irrational) index set is k� [�,��, 1,
0,�1, 0] and the rational set obtained (on account of the � inflation rule for the
submodules perpendicular to the periodic axis; see } 6) is � ¼ ½1�1120�220�.

} 13. Fibonacci sequences

We review here the methods developed by Singh and Ranganathan (1996) for
dealing with the indexing problem posed by decagonal quasicrystals. Fibonacci-type
sequences of indices are identified, and the complicated zone laws for the layered
decagonal module can be shown to be approximated by the simple expression

�1x
1
þ �2x

2
þ �3x

3
þ �4x

4
þ �5x

5
þ �6x

6
¼ 0 ð30Þ

when the inflation factor is sufficiently large. We shall then show how the approach
of Singh and Ranganathan can be modified to deal with octagonal and dodecagonal
quasicrystals.

The � inflation matrix T ¼ cycl ð00�11�110Þ for the C5 module in E2 satisfies

T
2
¼ T þ I þ U,

where U is the matrix all of whose elements are 1: U¼ cycl (11111). Hence, if we
employ indices � for the reciprocal vectors that satisfy �U¼ 0, that is

�1 þ �2 þ �3 þ �4 þ �5 ¼ 0, ð31Þ

then the repeated application of the � inflation of a reciprocal vector k corresponds
to a sequence of index sets �(0)¼ �, �(1)¼ �T, �(2)¼ �T2, . . . , in which each index set
is the sum of the two previous sets: �(nþ 1)¼ �(n)þ �(n� 1). For example, starting
from ½1�11000�, we obtain the sequence

�ð0Þ: 1 �11 0 0 0,

�ð1Þ: 0 0 �11 0 1,

�ð2Þ: 1 �11 �11 0 1,

�ð3Þ: 1 �11 �22 0 2,

�ð4Þ: 2 �22 �33 0 3,

�ð5Þ: 3 �33 �55 0 5,

�ð6Þ: 5 �55 �88 0 8,

..

.
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The numbers appearing in this sequence are the Fibonacci numbers

1 1 2 3 5 8 13 21 . . .

generated by the recursion relation Fnþ1¼Fn�1þFn. Thus �(n)¼ (Fn�1,�Fn�1,�Fn,
0,Fn). The limit of Fnþ1/Fn is the ‘golden number’ �; so we have

lim
n!1

�ðnÞ

Fn

� �
¼ ð�� � �1 0 1 Þ ¼

�ð0Þ

51=2
P ð32Þ

where P is the matrix

P ¼
1

51=2
cyclð 2 �� �� �� �� Þ:

Similarly, it can be established that this relation holds when �(0) is any one of the
index sets ð1�11000Þ, ð01�1100Þ, ð001�110Þ, ð0001�11Þ or ð�110001Þ. However, any 5-tuple satis-
fying equation (31) is a linear combination of these, so that equation (32) is true in
general for the sequences generated from any 5-tuple �(0) satisfying equation (31).
If follows, then (because P

2
¼P), that for the higher terms in these sequences

the expression �(n)P is approximately equal to �(n). This in turn implies that the
complicated zone law (25) for the layered decagonal module can be approximated by
the simpler expression (30) if the inflation factor is sufficiently large.

Similar methods are possible for octagonal and dodecagonal quasicrystals. The
C8 module in E2 has a 21/2 inflation rule. This does not provide a scheme analogous
to that described above for the C5 module. However, consider the 1þ 21/2 inflation
rule. For the 2� 4 generating matrix for the C8 module given in } 10, the inflation
matrix for the inflation factor l¼ 1+21/2 is

T ¼

1 1 0 �11

1 1 1 0

0 1 1 1

�11 0 1 1

0
BBB@

1
CCCA:

Starting with �(0)¼ (1000), successive multiplication by T gives the sequence

�ð1Þ: 1 0 0 0,

�ð2Þ: 1 1 0 �11,

�ð3Þ: 3 2 0 �22,

�ð4Þ: 7 5 0 �55,

�ð5Þ: 17 12 0 �11�22,

..

.

Since l2¼ 1þ 2l, number sequences generated by the recursion relation
Fnþ1¼Fnþ 2Fn�1 have the limit property lim(Fnþ1/Fn)¼ l. Denoting the nth terms
in the two sequences

1 1 3 7 17 41 99 . . . ,

0 1 2 5 12 29 70 . . . ,
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by Fn and Gn respectively, a further relation is Fn¼GnþGn�1 from which it follows
that Fn/Gn¼ 1þGn�1/Gn. Taking the limit,

lim
n!1

Fn

Gn

� �
¼ 21=2:

The nth term in the sequence of index sets is clearly �(n)¼ (Fn, Gn, 0, �Gn), so that

lim
n!1

�ðnÞ

Fn

� �
¼ 2�ð0ÞP, ð33Þ

where P is the projection matrix

P ¼ 1
4

2 21=2 0 �21=2

21=2 2 21=2 0

0 21=2 2 21=2

�21=2 0 21=2 2

0
BBB@

1
CCCA

for the C8 module. Similarly, it is easily established that equation (33) is also valid for
the values (1000), (0100), (0010) and (0001) of �(0) and hence for any choice of �(0).
Hence, for the five-index scheme for the layered octagonal module in E3 (analogous
to Fitz Gerald’s scheme for the decagonal module) the complicated zone law can be
approximated by

�1x
1
þ �2x

2
þ �3x

3
þ �4x

4
þ �5x

5
¼ 0:

For the layered C12 module we find that a similar scheme works if we employ
six vectors perpendicular to the periodic axis, although the rank of the planar C12

module is in fact only four. That is, we choose

E �
2 31=2 1 0 �1 �31=2

0 1 31=2 2 31=2 1

� �

as the generating matrix for the planar C12 module. Then

P ¼ 1
6

2 31=2 1 0 �1 �31=2

31=2 2 31=2 1 0 �1

1 31=2 2 31=2 1 0

0 1 31=2 2 31=2 1

�1 0 1 31=2 2 31=2

�31=2 �1 0 1 31=2 2

0
BBBBBBBB@

1
CCCCCCCCA
:

Because the rank of the module is only four, the sets of reciprocal indices � are not
independent. They satisfy

�5 ¼ �3 � �1, �6 ¼ �4 � �2: ð34Þ

We have a l¼ 1þ 31/2 inflation rule with inflation matrix

T ¼

1 1 0 0 0 �11

1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1
�11 0 0 0 1 1

0
BBBBBBB@

1
CCCCCCCA
:

Indexing schemes for quasilattices 3305



Any index set � satisfying equation (34) is a linear combination of the index sets

ð1000�110Þ, ð01000�11Þ, ð001010Þ, ð000101Þ: ð35Þ

Applying the matrix T repeatedly to any one of these four sets, we obtain a sequence
in which each set is twice the sum of the previous two, corresponding to the property
l2¼ 2 (lþ 1) of the inflation factor. For example,

�ð1Þ: 1 0 0 0 �11 0,

�ð2Þ: 1 1 0 �11 �11 �22,

�ð3Þ: 4 2 0 �22 �44 �44,

�ð4Þ: 10 6 0 �66 10 12,

�ð5Þ: 28 16 0 16 28 32;

..

.

In terms of the two sequences F and G,

1 1 4 10 28 76 . . . ,

0 1 2 6 16 44 . . . ,
ð36Þ

generated by the recursion relation Fnþ1¼ 2(FnþFn�1),

�ðnÞ ¼ ðFn,Gn, 0,�Gn,�Fn,�2GnÞ:

Other sequences can be generated similarly from the other sets given in equation (35).
It readily follows, from the property

lim
Fn

Gn

� �
¼ 31=2

of the two number sequences (36) that, for any index set �(0) satisfying (33),

lim
n!1

�ðnÞ

Fn

� �
¼ 2�ð0ÞP:

Since P2
¼P, the terms �(n)P occurring in the zone law for the layered C12 module

in E3 can, as in the previous cases C5 and C8, be approximated by �(n), and
the complicated zone law has, correspondingly, this simple approximation

�1x
1
þ �2x

2
þ �3x

3
þ �4x

4
þ �5x

5
þ �6x

6
þ �7x

7
¼ 0:

(The seventh term, of course, refers to the periodic axis.)

Acknowledgements

I thank Professor S. Ranganathan, for his interest in my work and for making
the facilities of the Department of Metallurgy, Indian Institute of Science, available
to me. Financial support from the Department of Science and Technology, New
Delhi, the Office of Naval Research and the Defence, Research and Development
Organisation, Ministry of Defence, Government of India is gratefully acknowledged.

References

Alexander, S., 1986, J. Phys., Paris, 47, 143.
Ben-Israel, A., and Greville, T. N. E., 1977, Generalised Inverses: Theory and Applications

(New York: Wiley).
Boerner, H., 1963, Representations of Groups (Amsterdam: North-Holland).

3306 E. A. Lord



Burrow, M., 1965, Representation Theory of Finite Groups (New York: Academic Press).
Cahn, J. W., and Gratias, D. A., 1986, J. Phys., Paris, 47, C3, 415.
Cahn, J. W., Shechtman, D., and Gratias, D., 1986, J. Mater. Res., 1, 13.
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