
research papers

424 Mukhopadhyay and Lord � Least path criterion Acta Cryst. (2002). A58, 424±428

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 31 December 2001

Accepted 14 May 2002

# 2002 International Union of Crystallography

Printed in Great Britain ± all rights reserved

Least path criterion (LPC) for unique indexing in a
two-dimensional decagonal quasilattice

N. K. Mukhopadhyaya* and E. A. Lordb

aCentre of Advanced Studies, Department of Metallurgical Engineering, Institute of Technology,

Banaras Hindu University, Varanasi-221005, India, and bDepartment of Metallurgy, Indian Institute

of Science, Bangalore-560 012, India. Correspondence e-mail: mukho@banaras.ernet.in

The least path criterion or least path length in the context of redundant basis

vector systems is discussed and a mathematical proof is presented of the

uniqueness of indices obtained by applying the least path criterion. Though the

method has greater generality, this paper concentrates on the two-dimensional

decagonal lattice. The order of redundancy is also discussed; this will help

eventually to correlate with other redundant but desirable indexing sets.

1. Introduction

Following the discovery of a decagonal phase exhibiting

two-dimensional quasiperiodicity as well as one-dimen-

sional periodicity (Bendersky, 1985; Chattopadhyay et al.,

1985), an indexing scheme for the diffraction pattern of this

phase was proposed by Koopmans et al. (1987) [an extension

of the model proposed by Ho (1986)]. In these schemes, a

pentagonal bipyramid of basis vectors is derived from a

distorted icosahedral basis. Mandal & Lele (1991) and Prasad

et al. (1997) employed a similar distorted icosahedral basis,

derived from a six-dimensional orthogonal unit cell, where

one basis vector is different in length from the others. Fitz

Gerald et al. (1988) developed a completely different scheme

in which the periodic and quasiperiodic basis vectors were

kept separated: a planar pentagonal basis and a sixth vector

along the periodic axis. By following the above scheme, Choy

et al. (1988) simulated the diffraction patterns of the decagonal

phase and indexed them accordingly. Aragon et al. (1990) also

used the six basis vectors but with different scaling constant

for indexing. However, the planar quasiperiodic basis vectors

lead to non-unique indexing as the basis vectors are not

linearly independent. Dalton et al. (1992) advocated an

indexing scheme based on two appropriately distorted icosa-

hedra rotated 36� about a common axis (i.e. periodic axis),

giving a large index set with much more redundancy. Earlier,

Mukhopadhyay et al. (1989) proposed a `least path criterion'

(LPC) in order to obtain unique indexing sets from the

pentagonal basis by removing the redundancy of indices. A

mathematical proof of the uniqueness was not established for

any generalized set of indices by any mathematical proof. The

aim of the present paper is to demonstrate a rapid method of

identifying the index set of least path length and to present a

mathematical proof of the uniqueness of index sets obtained

in this way. We restrict ourselves here to the case of the two-

dimensional decagonal quasilattice. The problem of non-

uniqueness for the distorted icosahedral basis will be dealt

with elsewhere.

It is known that the 2D decagonal quasilattice requires a

minimum of four basis vectors for its unique indexing, but

from the symmetry point of view ®ve vectors are found to be

useful. (The situation is analogous to the employment of three

base vectors for the 2D hexagonal lattice.) Cervellino et al.

(1998) used the four basis vectors and proposed a metho-

dology for derivation of proper basis vectors after identifying

the unit cell in a minimum higher-dimensional lattice through

Patterson analysis. This approach identi®es the correct scaling

constant and uses minimum basis vectors but, as mentioned

earlier, the symmetry relations among the various vectors are

not obvious. In addition to the non-uniqueness of indices used

for quasicrystal diffraction patterns owing to redundancy of

the basis vectors, the self-similarity (scaling symmetry) of

Bragg-peak positions also leads to the problem of selecting

basis vectors with different length and orientation. As a result,

the non-uniqueness hinders the comparison of diffraction

results reported by different researchers. However, here we

will address the problem of non-uniqueness due to the

redundancy problem only. For consistency, the least path

criterion (LPC) can be adopted. To the best of the authors'

knowledge, no mathematical proof has hitherto been given for

the uniqueness of LPC indices. For indexing schemes with

redundancy, the useful concept of the order of the redundancy

can be de®ned with respect to least path indices (for which the

order of redundancy is zero). The examples of super¯uous

indices will be drawn from the literature and thus the impor-

tance of the least path criterion while indexing becomes

apparent. While analysing the diffraction patterns of the

decagonal quasilattice, one can ®nd that the diffraction

pattern exhibiting tenfold symmetry contains two important

directions, which are designated as P and D. The P directions

are along the pentagonal base vectors (and their negative

counterparts). A D direction lies along the bisector of the

angle between two consecutive P directions. The base vectors

of a planar pentagonal basis (Fig. 1) satisfy

e1 � e2 � e3 � e4 � e5 � 0 �1�



(i.e. the ei are the position vectors of the vertices of a regular

pentagon).

This linear dependence of the base vectors gives rise to a

redundancy problem while assigning indices. To avoid the

redundancy, one can take four basis vectors instead of ®ve and

assign the indices accordingly, by replacing one of the basis

vectors:

e5 � ÿ�e1 � e2 � e3 � e4�: �2�
Thus, for example, �00001� will be represented as ��1�1�1�1�. More

generally, the vector (n1, n2, n3, n4, n5) can be replaced by

(n1 ÿ n5, n2 ÿ n5, n3 ÿ n5, n4 ÿ n5) if one chooses to dispense

with the ®fth basis vector. However, the symmetry is obscured

by this method and one cannot easily correlate with other

symmetry-related vectors. Therefore, ®ve basis vectors are

found to be more useful. The redundancy problem may then

be settled by following the least path criterion proposed by

Mukhopadhyay et al. (1989).

2. Statement of the problem

Owing to redundancy in the basis, (n1, . . . , n5) and

�n1 ÿ k; n2 ÿ k; n3 ÿ k; n4 ÿ k; n5 ÿ k� �3�
represent the same vector, whatever the value of k. The

problem is how to select a unique index set from all these

possibilities.

2.1. Least path criterion or least length criterion

Consider the vector q0 �
P

ni �ei (ni integers; i = 1, . . . , 5).

The quintuplet for this vector can be changed by replacing any

one of the integers, i.e.

�qi �
P5

j�1

�nj ÿ ni��ej: �4�

This gives six integer sets representing the same vector. Their

path lengths are de®ned as

N0 �
P5

i�1

jnij; Nj �
P5

i�1

jni ÿ njj; j � 1; . . . ; 5: �5�

Now, any Nj will be accepted if it is less than all other Nk (k =

0, . . . , 5):

Nj � Nk; k � 0; . . . ; 5: �6�

This is the least path criterion (LPC) proposed by Mukho-

padhyay et al. (1989). The criterion enables one to choose the

indices unambiguously. We now state and prove a lemma that

establishes the uniqueness of this choice and provides a fast

method of immediately obtaining the index set of minimum

path length from any given index set.

3. Lemma

The index set with the smallest path length

jn1 ÿ kj � . . .� jn5 ÿ kj �7�
is unique and is obtained when k is the index that comes in the

middle when n1, . . . , n5 are ordered numerically.

3.1. Proof

Let us assume that we have a numerically ordered integer

set n1, . . . , n5, i.e.

n1 � n2 � n3 � n4 � n5: �8�
Now select k to be the middle integer, n3 in the present case.

Note that choosing k in this way gives an index set with a zero,

two non-negative and two non-positive integers:

�n1 ÿ n3; n2 ÿ n3; n3 ÿ n3; n4 ÿ n3; n5 ÿ n3� � �ÿ�;ÿ�; 0; ; ��;
�9�

where �, �, , � are non-negative integers. The path length is

now

` � �� ��  � �: �10�
Now we have to prove that

`k � jkÿ �j � jkÿ �j � jkj � jk� j � jk� �j>`; �11�
for any non-zero k.

First, suppose that k > 0. Then `k � jkÿ �j � jkÿ �j �
3k�  � �.

Case (i): Suppose k ÿ � � 0 and k ÿ � � 0. Then, `k �
�ÿ k� �ÿ k� 3k�  � � (because jkÿ �j � �ÿ k and

jkÿ �j � �ÿ k). We get

`k � �k� `�>`:

Case (ii): Suppose k ÿ � � 0 but k ÿ � > 0. Then jkÿ �j �
�ÿ k but jkÿ �j � kÿ � and we get

`k � �ÿ k� kÿ �� k� k� �� k� 
� 3kÿ 2�� `
� k� 2�kÿ �� � `> k� `> `:

Case (iii): If k ÿ � > 0 and k ÿ � > 0, then

`k � 5kÿ �ÿ ��  � � � 5kÿ 2�ÿ 2�� `:
But � � k, � � k, so that 2(� + �) � 4k and hence 5k ÿ
2(� + �) � k. We again ®nd that

`k � �k� `�>`:
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Figure 1
Pentagonal basis vectors.
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This completes the proof of the lemma for the cases where k is

positive. Assuming, alternatively, that k is negative, the proof

is obtained from the above by replacing �, �, , � and k by �, ,

�, � and ÿk, respectively.

Therefore we see that, for any index set [n1, . . . , n5], the

equivalent index set with least path length is unique, and is

given by (3), with k given by the middle term when the indices

are numerically ordered. The index set obtained from the least

path criterion can be taken as free from redundancy of any

order.

3.2. Example

Let us take an example of an index set as �11�2�25� from

which we can ®nd `k = 11. Therefore, we can easily ®nd out the

required integer to be subtracted: The numerically ordered set

is ��2�2115�, k = 1 is the middle index. The unique LPC index set

is therefore �00�3�34�, ` = 10. The original redundant set �11�2�25�
can be de®ned as redundant of the order or the order of

redundancy (OR) 1 (i.e. |k| = 1).

Now we can also discuss some examples from the literature.

It has been noticed that redundant indices are often used in

the literature. In some cases, it may have some advantages. In

particular, Singh & Ranganathan (1996) and Ranganathan et

al. (1994), following the Fitz Gerald choice of basis vectors,

have used the redundant set for indexing the zone axis of

decagonal quasicrystals. They demonstrated that with this

redundant set one satis®es the zone-axis law, which is analo-

gous to that of a crystalline lattice. For example, zone axes L

and J (designated by them in the stereogram corresponding

to the decagonal lattice), are indexed as �3�8�83101� and

�8 21 21 8 2 6 2�, which are obviously redundant of order 3 and

8, respectively. By applying the LPC on the ®rst ®ve indices

of the sets, one can easily ®nd the corresponding sets as

�0 11 11 0 7 1� and �0 29 29 0 1 8 2�, which are free from redun-

dancy. The highest OR was found to be 11 after examining the

table of zone axes worked out by Singh & Ranganathan

(1996). It is important to note that the super¯uous zone-axis

law does not work after applying the LPC. We are currently

studying this case and the ®ndings will be reported elsewhere.

Another important example we would like to discuss in

connection with super¯uous indices is that of Ryes-Gasga et al.

(1992) who (following the ®ve pentagonal and periodic basis

vectors) have indexed two important reciprocal spots in

electron diffraction patterns, which are �10�2�3�10� and �21�3�4�10�,
where the component along the sixth vector (periodic vector)

is zero. By applying the LPC, one can obtain the non-redun-

dant set as �21�1�200� and �32�2�300�, respectively. By comparing

the indices with those in Table 2, it is clear that these vectors

belong to D-type vectors and they are related by � scaling.

Obviously, in this case the super¯uous indices have obscured

the symmetry relation, as the set was redundant of the order of

1 in both cases. Therefore, one can really see the advantages of

LPC and the non-redundant set of indices.

4. LPC for P and D directions

We have computed the diffraction patterns from the Fourier

transform of decagonal quasilattices projected from ®ve-

dimensional space (Fig. 2). The details of the procedure have

already been discussed earlier (Mukhopadhyay et al., 1989).

Here we want to show the important P and D types of reci-

procal vectors in the computed patterns and their corre-

sponding indices following the LPC.

The components of the ®ve planar base vectors are given by

e1 e2 e3 e4 e5

ÿ � � 1 ÿ�=2 ÿ�=2 ÿ�=2 ÿ�=2

0 ��=2 �=2 ÿ�=2 ÿ��=2

� �
;

�12�
where � � �1� 51=2�=2, � � �1ÿ 51=2�=2, � � �3ÿ ��1=2.

They satisfy the identities

e1 � ��e2 � e5� � ��e3 � e4� �13�
e2 ÿ e5 � ��e3 ÿ e4� � ��e4 � e5 ÿ e2 ÿ e3�: �14�

4.1. The P directions

De®ne the distance from the centre of the diffraction

pattern to the spot labelled (10000) to be unity. According to

(13), indices for other spots along this direction are linear

combinations of (10000), (01001) and (00110); i.e. they are all

of the form (abccb). The distance from the centre to the spot

labelled (abccb) is

�aÿ b� � ��bÿ c�:
Applying the least path criterion we get, from (abccb), LPC

index sets of the following forms, in which m and n have

opposite signs:

(0mnnm) if a is the `middle index',

(n0mm0) if b is the `middle index',

(mn00n) if c is the `middle index'.

LPC indices for the other P directions are of course related

to these by cyclic permutation.

Figure 2
Computed diffraction patterns along a tenfold axis based on the Fourier
transform of the orthogonal window function, which has been chosen as a
decagon. The 0 and 18� lines corresponding to the P and D vectors are
shown. The important vectors (A±E) and (A0±E0) are indicated.



Table 1 lists the LPC indices for the �-in¯ation sequence

along the P direction e1, obtained from linear combinations of

(10000) and �00�1�10� by a `Fibonacci rule': each index set is a

sum of the two sets preceding it in the list. The symbol !
indicates the application of the LPC rule.

4.2. The D directions

Equation (14) implies that any spot along the direction

perpendicular to e1 can be indexed by a linear combination of

�0100�1� and �001�10�. These index sets thus have the char-

acteristic pattern �0abba� (and index sets for the other D

directions are related to these by cyclic permutation). Since

the `middle index' is 0, these index sets are already in the

unique LPC form. The distance from the centre of the

diffraction pattern to the spot labelled �0abba� is �(b + a�). It

can be seen that ��101�11� is perpendicular to e2. It labels the

spot at a distance �(� ÿ 1) = �ÿ1�. The �-in¯ation sequence

along the D direction perpendicular to e1, obtained by the

`Fibonacci rule', is indicated in Table 2.

5. Experimental examples

By following the LPC, we have indexed important re¯ections

observed by us in our experimental powder X-ray diffraction

pattern obtained from an Al65Cu20Co15 decagonal quasicrystal

using Cu K� radiation (Fig. 3). These are also displayed in

Table 3 along with their interplanar spacings and intensities.

Some re¯ections, which are already marked in computed

electron diffraction patterns (Fig. 2), are indicated in the table.

It should be mentioned that in the present case the quasilattice

(aR) and the periodic lattice (c) constants, following the

methodology proposed earlier by us (Mukhopadhyay et al.,

1989), are found to be 0.398 and 0.815 nm, respectively. These

parameters are used for the present indexing scheme. It should

be mentioned that the quasilattice constant determined by

us is �3 times more than that of Tsai et al. (1989) and it ®ts

reasonably well with the physical real-space parameter in 3D

space. It is of interest to point out that Cervellino et al. (1998)

have employed minimum 5D space to generate the quasi-

lattice structure and indexed accordingly. However, as

mentioned earlier, in the 5D space approach the symmetry

relations among the various planes and directions are not at all

obvious. In the present case, 6D space has been used to

generate the structures and by the LPC the redundancy

problem has also been eliminated in order to bring out the

symmetry relations among planes and directions. It may be

emphasized that, after removing the redundancy problem in

the 6D space approach, both the 5D and 6D space approaches

can be correlated and the equivalent indices can easily be

obtained.

6. A note on the hexagonal case

The case of three base vectors satisfying

e1 � e2 � e3 � 0 �15�
is also not without interest, since it corresponds to the

generally adopted basis for the hexagonal lattice (Frank,

1965). The standard prescription for eliminating the redun-

dancy is to choose index sets that satisfy

n1 � n2 � n3 � 0: �16�
This gives fractional indices and so a scaling factor is intro-

duced; for example, �023� ! �ÿ5=3; 1=3; 4=3� ! ��514�. The

least path criterion gives �023� ! ��201�. Clearly, the least path

criterion is simpler to apply and provides index sets with

smaller integers, but is unlikely to be adopted as an indexing

scheme for hexagonal lattices ± the prescription (16) is far too

well established.

7. Concluding remarks

The lemma provides a simple and straightforward method of

dealing with the redundancy problem in the indexing of
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Figure 3
X-ray powder diffraction pattern (Cu K�) obtained from the Al±Cu±Co
decagonal phase, synthesized by slow cooling from the melt. All the
re¯ections are indexed with a non-redundant set of indices after applying
LPC.

Table 1
Indices of some important `P'-type vectors marked A±E along the 0� line
in Fig. 2.

. . . . . . . . .
�ÿ3 ��30�2�20� ! ��12002�
�ÿ2 �20110� ! �1�100�1�
�ÿ1 ��10�1�10� ! �01001�

A 1 �10000�
B � �00�1�10�
C �2 �10�1�10�
D �3 �10�2�20�
E �4 �20�3�30�

. . . . . . . . .

Table 2
The indices of important `D'-type vectors, marked A0±E0 along the 18�

line in Fig. 2.

. . . . . .
��ÿ2 �02�11�2�
��ÿ1 �0�11�11�

A0 � �0100�1�
B0 �� �001�10�
C0 ��2 �011�1�1�
D0 ��3 �012�2�1�
E0 ��4 �023�3�2�

. . . . . .
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diffraction patterns of decagonal quasicrystals. The proof is

readily generalizable to the case of an arbitrary odd number of

basis vectors satisfying a linear dependence relation analogous

to (1). For an even number of base vectors, the uniqueness of

the index set of least path length is lost. In these cases, there

are two middle values when the indices are numerically

ordered, say nr and nr+1, and the index sets with minimal path

length are given by the values of k satisfying nr � k � nr+1.

However, the case of ®ve base vectors is of course the one of

practical importance, since (1) corresponds to the Fitz Gerald

choice of basis for decagonal quasicrystals.
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Important re¯ections observed in the powder X-ray diffraction pattern
obtained from Al±Cu±Co decagonal quasicrystalline phases; the indices
are free from redundancy after applying LPC; the sixth indices are along
the periodic direction of the decagonal phase (aR = 0.398, c = 0.815 nm).

Sl No.
Indices
(n1, . . . , n6) d (nm)

Intensity
(I/Imax)

Fig. 2
(related spots)

1 10�1�100 0.3802 35 C
2 11�1�100 0.3234 20 C0

3 10�2�200 0.2349 12 D
4 10�2�202 0.2062 100
5 000004 0.2038 70
6 21�1�200 0.1998 23 D0

7 11�1�104 0.1725 18
8 20�3�300 0.1452 10 E
9 21�1�204 0.1427 12

10 30�3�220 0.1235 14 E0
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