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In nature, helical structures arise when identical structural subunits combine sequentially, the orien-
tational and translational relation between each unit and its predecessor remaining constant. A helical
structure is thus generated by the repeated action of a screw transformation acting on a subunit. A
plane hexagonal lattice wrapped round a cylinder provides a useful starting point for describing the
helical conformations of protein molecules, for investigating the geometrical properties of carbon
nanotubes, and for certain types of dense packings of equal spheres.
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INTRODUCTION

An infinite strip of a tiling of the Euclidean plane
by equilateral triangles, bounded by two parallel lines,
can be wrapped around a circular cylinder so that the two
strip edges meet. We shall refer to the resulting struc-
ture as acylindrical hexagonal latticeor, briefly, aCHL.
Alternatively, instead of rolling the strip around a cylin-
der, corresponding points on the edges may be brought
into coincidence by folding along the fundamental lattice
lines, keeping the triangular facets flat. We shall refer to the
resulting structure as atriangulated helical polyhedronor,
briefly, aTHP. A THP is an “almost regular” polyhedron,
in that its symmetry group, a rod group, acts transitively
on the vertices and faces, although not on the edges.

The geometrical properties of the THPs are of rele-
vance in structural chemistry for several reasons. As Sadoc
and Rivier [1] have shown, the helical structures com-
monly occurring in proteins are metrically quite close to
polygonal helices consisting of edges of THPs. The rodlike
sphere packings investigated by Boerdijk [2] are derived
from the Coxeter helix [3–5], which is the simplest THP.
In a nanotube, the atomic positions correspond to a subset
of the vertices of a THP.

1This contribution is part of a collection titled Generalized Crystallogra-
phy and dedicated to the 75th anniversary of Professor Alan L. Mackay,
FRS.

2Department of Metallurgy, Indian Institute of Science, Bangalore
560012, India.

The purpose of this work is twofold: to derive ex-
pressions for the metrical and topological parameters of
the triangulated helical polyhedra and to indicate their
importance by means of examples from the literature on
protein helices, sphere packings, and nanotubes.

NOMENCLATURE

A THP, or a CHL, is determined by the translation
vector separating pairs of points on the strip boundaries
that are to be identified. Let the components of this vec-
tor, referred to the underlying planar hexagonal coordi-
nate system, be (m, n). The 6m symmetry of the plane
hexagonal lattice implies that the integer pairs (m, n),
(−l , m), (−n, −l ), (−m, −n), (l , −m), and (n, l ) all
give rise to thesamestructure and (n, m), (l , n), (−m, l ),
(−n, −m), (−l , n), and (m, −l ) refer to its mirror image
(where l = n−m.) The rebundancy in the notation is
eliminated by the requirement

0≤ l ≤ m≤ n = l +m. (1)

Thus each kind of THP (or CHL) may be denoted by a
uniquesymbol (l , m, n). (See, for example, Sadoc and
Rivier [1].)

Except for the special cases (0,m, m) and (m, m
2m), the CHLs are chiral: (l , m, n)R has, by convention,
right-handed{l } and{n} type helices and the{m} type is
left-handed. The mirror image of (l , m, n)R is, of course,
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Fig. 1. Construction of the CHL (3, 5, 8).

denoted by (l , m, n)L. Figure 1 illustrates the case (3, 5, 8).
The direction of the strip edges can be arbitrary. Three
special choices are indicated on the figure: strips with
widths 3, 5, and 8 of the elementary equilateral triangles,
along the directions [1, 1], [1, 0], and [0, 1], respectively.
The corresponding lines of lattice points become helices
on the cylinder: Three helices of type{3}, five of type{5},
and eight of type{8}. Figure 2 illustrates a portion of the
THP of type (3, 5, 8)L.

METRICAL PARAMETERS OF A CHL

A vertex of a plane hexagonal lattice can be identi-
fied by two integers (µ, ν) — its coordinates in terms of
the hexagonal coordinates. In a CHL, the point (µ, ν) ac-
quires a position on the cylinder, with three-dimensional
(3-D) cylindrical coordinates (ρ,ϕ, z), which can be found
as follows. On the plane hexagonal lattice the angleα

between the directions (µ, ν) and (m, n) is given by

cosα = {(m− n/2)µ+ (n−m/2)ν}/λk,

sinα = √3(nµ−mν)/2λk (2)

Fig. 2. The triangulated helical polyhedron (3, 5, 8)L.

whereλ = √(µ2+ ν2− µν), k = √(m2+ n2−mn).
Then the coordinates of the point (µ, ν) in 3-D Euclidean
space areρϕ

z

 =
 k/2π

(λcosα)/ρ
λsinα


=
 k/2π

2π{(m− n/2)µ+ (n−m/2)ν}/k2√
3(nµ−mν)/k

 (3)

The{l }, {m}, and{n} type helices are, respectively, along
[−1,−1], [0, 1], and [−1, 0], so that theirrotational ad-
vances per edgeare

π (−m− n)/k2, π (n+ l )/k2, π (l −m)/k2

(4)

and thetranslational advancesare
√

3(l/k),
√

3(m/k),
√

3(n/k) (5)

METRICAL PARAMETERS OF A THP

Sadoc and Rivier [1] have identified several well-
known helices occurring in protein structure with type{1}
helices of THPs of the form (1,m, m+ 1):

m = 2: the 310 helix

m = 3: theα helix

m = 4: theπ helix

m = 5: theγ helix.

See, for example, Lehninger, Nelson, and Cox [6] for the
structure and nomenclature of the corresponding protein
configurations. In these models, the type{1} polygonal
helix represents the polypeptide chain. Other edges of the
TPH correspond to the linking hydrogen bonds that are
responsible for the helical configuration.

The method of Sadoc and Rivier for computing the
metrical parameters of TPHs of the special kind (1,m,
m+ 1) is as follows. Let. . . A−2 A−1 A0 A1 A2 A3 . . .

denote the sequence of successive vertices of the type{1}
helix of the TPH (1, m, m+ 1) and observe that
A0AmAm+1 is a face—an equilateral triangle. Choose
Cartesian coordinates so that Am has coordinates
ρ(cosmϕ, sinmϕ,mc) and equate the three edge lengths
A0Am, A0Am+1 and AmAm+1 = A0A1. This gives

c2− 2cosϕ = m2c2− 2cosmϕ

= (m+ 1)2c2− 2cos(m+ 1)ϕ. (6)
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Fig. 3. Projection of a triangular facet of a THP, along the axis, and
perpendicular to the axis.

Eliminating c2 and expressing cosmϕ and cos(m+ 1)ϕ
as polynomials inχ = cosϕ gives a polynomial inχ of
degreem+ 1. It can be shown that this polynomial has
a factor (χ − 1)2, so we finally arrive at a polynomial
in χ of orderm− 1. Only one root (in fact, the largest
root) is relevant; the other roots correspond to triangulated
surfaces with self-intersections.

Consider now more general cases (l , m, n). For large
vectors (m, n) it is obvious that the formulas for the pa-
rameters of a CHL will give reasonable approximations to
those for the corresponding THP. For smaller values we
resort to Fig. 3, which represents the projection of a THP
on planes perpendicular and parallel to its axis, of the
edges of a constituent equilateral triangle. To find the ra-
diusρ, we start from the formula for the circumradius of
a triangle with edgesl1, l2, andl3

1

ρ2
= 2

(
1

l 2
1

+ 1

l 2
2

+ 1

l 2
3

)
−
(

l 2
1

l 2
2l 2

3

+ l 2
2

l 2
3l 2

1

+ l 2
3

l 2
1l 2

2

)
(7)

From Fig. 3, we see that

√(
1− l 2

1

)+√(1− l 2
2

) = √(1− l 2
3

)
(8)

and

m
√(

1− l 2
3

) = n
√(

1− l 2
2

)
(9)

so thatl2 andl3 can be expressed as functions ofl1:

1− l 2
2 =

(
1− l 2

1

)
(n/ l )2,

1− l 2
3 =

(
1− l 2

1

)
(m/ l )2 (10)

Thus, we get the radiusρ as a function ofl 2
1. Now observe

thatm steps of an{n} helix followed byn steps of an{m}
helix brings one back to the starting vertex. The path has
rotational advance 2π . From the figure, we see that the
rotational advance per edge length is 2sin−1(l2/2ρ) for
the type{m} helices and 2sin−1(l3/2ρ) for the type{n}
helices. This gives

msin−1(l3/2ρ)+ nsin−1(l2/2ρ) = π (11)

leading to a quite formidable transcendental equation inl 2
1.

The relevant root is the smallest root. A suitable starting
value for finding this root by successive approximation
can be taken to be thel 2

1 for the corresponding CHL,
(m+ n)2/4(m2+ n2−mn). Table I gives the metrical
parameters obtained in this way, using Mathematica, for a
few small values of (m, n). The final column is the radius
ρCHL of the corresponding CHL, for comparison:

ρCHL = k

2π
=
√

m2+ n2−mn

2π
. (12)

The corresponding values for therotational andtransla-
tional advanceper edge of the polygonal helices of types
{l }, {m} and{n} are

ϕ1, ϕ2, ϕ3 = 2sin−1(l1/2ρ), 2sin−1(l2/2ρ),

2sin−1(l3/2ρ) (13)

z1, z2, z3, = √
(
1− l 2

1

)
,
√(

1− l 2
2

)
,

√(
1− l 2

3

)
(14)

Table I. Parameters for THPs for Small Values of (l , m, n)

l m n l1 ρ ρCHL

1 2 3 0.94868 0.51962 0.42108
2 2 4 0.86603 0.61237 0.55133
1 3 4 0.97207 0.64526 0.57384
1 3 5 0.91821 0.74313 0.69374
1 4 5 0.98255 0.78561 0.72934
2 4 6 0.94547 0.88462 0.84217
3 4 7 0.90435 1.00188 0.96810
1 5 6 0.98811 0.93258 0.88614
2 5 7 0.96118 1.03166 0.99392
3 5 8 0.92881 1.14441 1.11408
4 5 9 0.89632 1.26887 1.24304
1 6 7 0.99139 1.08319 1.04365
2 6 8 0.97100 1.18076 1.14768
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Fig. 4. The Boerdijk–Coxeter structures (1, 2, 3)R and (1, 2, 3)L.

Cases (0,m, m) and (m, m, 2m) have not been listed in the
table because they are given, respectively, by the simple
formulas

ρ = 1/2 sin(π/m) and ρ = √3/4sin(π/2m)

(15)

THE BOERDIJK–COXETER STRUCTURE

The simplest nontrivial THP is (1, 2, 3) shown in
Fig. 4. It is the surface of a stack of regular tetrahedra.
We shall refer to it as the Boerdijk–Coxeter structure, or,
simply, the “B-C structure.” The vertices, labeled. . .A−2

A−1 A0 A1 A2 A3 . . . consecutively along the type{1}
helix are such thatany four consecutive pointsare the
vertices of a regular tetrahedron[3–5]. Buckminster
Fuller [7] named this helical structure “the tetrahelix.”
With unit edge length, five consecutive points on the type
{1} polygonal helix can be taken to be

(−1,−1,−1)/
√

8, (−1, 1, 1)/
√

8,

(1,−1, 1)/
√

8, (1, 1,−1)/
√

8,

(5/3, 5/3, 5/3)
√

8.

The action of ascrew transformationx→ Rx + a gener-
ates the whole structure, where

R= 1

3

 2 2 1
2 −1 −2
−1 2 −2

 , a =
1/3

√
2

1/3
√

2
1/3
√

2

 (16)

Theaxis directionn and therotational advance per edge
ϕ (of the type{1} polygonal helix) can be extracted from
the formula for rotation through an angleϕ about an axis
along a unit vectorn:

R = I + Nsinϕ + N2(1− cosϕ),

N =
 0 −n3 n2

n3 0 −n1

−n2 n1 0

 (17)

The translational advanced is the scalar product ofn with
a tetrahedron edge. The result is

n = (2, 1, 0)/
√

5, ϕ = cos−1(−2/3),

d = 1/
√

10. (18)

The radius is got by substitutingl1 = √(9/10), l2 =√
(6/10), l3 = √(1/10) into the formula forρ:

ρ = (3
√

3)/10. (19)

SPHERE PACKINGS

Boerdijk [2] investigated the Coxeter structure [the
THP (1, 2, 3)] in connection with dense packings of equal
spheres. The configuration of four spheres in a tetrahe-
dral configuration, each touching other three, gives the
Rogers upper bound for the upper limit of any possible
packing fraction for equal spheres. The bound can never
be achieved because regular tetrahedra will not pack to-
gether in Euclidean. However, sphere packings that fill
only a portion of space can come much closer to the bound
than hexagonal close packing—the densest lattice pack-
ing. Boerdijk considered the dense rod-shaped packing in
which the sphere centers lie on the vertices of a (1, 2, 3)
(Fig. 5).

EXTENSION OF THE HELICAL
SPHERE PACKING

As pointed out by Boerdijk, the packing of spheres
centred at the vertices of (1, 2, 3) can be extended by
adding more spheres over the midpoints of edges of type
{1} helices. Specifically, an extra vertex is placed over the
midpoint of each edge of the type{1} helix, forming an
equilateral triangle with the two vertices of that edge. This
determines additional, only slightly irregular, tetrahedra,

Fig. 5. The dense packing of spheres centered at the vertices of a B-C
helix.
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(a)

(b)

(c)

Fig. 6. Extension of the sphere packing. Sphere centers are at vertices
of the tetrahedra. The additional tetrahedra are very nearly regular.

so that every edge of the type{1} helix is shared by five
tetrahedra (Fig. 6)

Further extensions of the Boerdijk–Coxeter structure
are possible. The next stage of adding spheres gives a
rodlike structure in which every vertex of the original
(1, 2, 3) is surrounded by twelve others, configured as
a somewhat distortedicosahedron, as shown in Fig. 7.
Thus each tetrahedron of the initial (1, 2, 3) is now shared
by four icosahedra. This 26-sphere cluster is a slightly
distorted form of the 26-atomγ -brass cluster. Another in-
teresting subset of the tetrahedra in this structure is the
triplet of distorted B-C helices twisted around each other
(Fig. 8). One could go on adding more spheres, but the
deviation of the tetrahedra from regularity (corresponding
to lower sphere packing fraction) becomes severe.

NANOTUBES

Whenm+ n is divisible by three, the THP of type
(l ,m,n) can be converted to a model for a net of equilateral
hexagons with all vertices lying on a cylinder, simply by
omitting one in three of the vertices. Figure 9 illustrates

Fig. 7. Further extension of Boerdijk’s sphere packing, represented by
tetrahedra whose vertices are the sphere centers. Every sphere of the
original configuration (Fig. 5) is now the center of a 13-sphere cluster.

this for the case (4, 7, 11). The algorithm described in
the fourth section for determining the metrical properties
of the THPs is thus applicable to the structure of carbon
nanotubes.

Nanotubes [8, 9] can be classified by a pairs of inte-
gers [M , N], corresponding to the numbers of helices of
edge-connected hexagons that wind around the nanotube
to left and right. The relation between the (m, n) of a THP
and the [M , N] describing this subset of its vertices that
corresponds to the atoms of a nanotube is

M = (m+ n)/3, N = (2n−m)/3

m = 2M − N, n = M + N (20)

For example, starting with a (4, 7, 11), the formu-
las give (7, 11)→ [6, 5]. This corresponds to thestan-
dard triplet [1, 5, 6]. That is, the THP (4, 7, 11) gives
rise to a metrical model for the nanotube [1, 5, 6]. More
specifically, since areflectionis involved in the coordinate
resetting of the final step, (4, 7, 11)L → [1, 5, 6]R.

Fig. 8. Configuration of three helically coiled B-C structures.
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Fig. 9. The [1, 5, 6] nanotube derived from the (4, 7, 11) TPH.

The “chair” and “zigzag” type nanotubes (Fig. 10)
are given by

(0, 3µ, 3µ)→ [µ,µ,2µ] and (µ,µ,2µ)→ [0, µ, µ].

(21)

Fig. 10. The [0, 10, 10] “zigzag type” nanotube and the [5, 5, 10]
“chair type.”

The density of a carbon nanotube of a given structural
type (l , m, n) is readily calculated. The type{n} polygo-
nal helices have a rise per edge of

√
3(n/k) (using the

approximation given by the CHL formula). The num-
ber density of vertices per unit advance along the cylin-
der axis is, therefore,k/n

√
3. There aren type {n} he-

lices. In the carbon nanotube model, one-third of them are
hexagon centers, so the number of carbon atoms per unit
length of the nanotube is 2k/3

√
3. The C C bond length

B is the unit of length. Denoting the mass of a carbon
atom byM , we get, for the mass per unit length of the
nanotube,

2kM/3B
√

3= 4πRM/3B2√3 (22)

whereR is the radius out to an atom center—the average
of internal and external radius. For example, takingM =
10−3 gm andB = 1.42 Å (from graphite), gives 2.52×
10−14 gm/cm for the case (4, 7, 11), corresponding to the
[1, 5, 6] nanotube.

COLLAGEN AND THE POLYTOPE {3, 3, 5}

The regular four-dimensional polytope{3, 3, 5} has
120 vertices, 1200 edges, 720 equilateral triangle faces,
and 600regular tetrahedralcells. Five cells surround each
edge and twenty surround each vertex—forming aregular
icosahedron[4, 5, 10].

Circuits of 30 face-sharing tetrahedra occur in
{3, 3, 5}. They are each metrically identical to the
Boerdijk–Coxeter structure in 3-D Euclidean space. One
can select four of them forming a configuration, which,
when deformed to fit into 3-D Euclidean space, can
give a fairly accurate structure of thecollagen molecule.
Collagen consists of three left-handed helical polypep-
tide chains twisted around each other with a right-handed
helical twist [6]. In the model of Sadoc and Rivier [1],
derived from the corresponding structure in the polytope
{3, 3, 5}, a central B-C structure (1, 2, 3)R is surrounded
by three somewhat distorted B-C structures (1, 2, 3)R
each sharing a type{3} helix with it. The polypeptide
chains correspond to theleft-handed type{2} helices of the
three outer structures. Other tetrahedron edges represent
hydrogen bonds.

We have already noticed the geometrical structure in
the extension of the Boerdijk’s sphere packing (Fig. 8).
The pictures displayed in Fig. 11 was obtained by pro-
jecting from{3, 3, 5}[11]. Observe that the structures dif-
fer in pitch; in Fig. 8, the central core B-C structure is
undistorted, whereas in Fig. 11, a slight untwisting has
been applied to conform to give the pitch observed in the
collagen structure.
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Fig. 11. General view of the three outer B-C structures of the collagen
model proposed by Sadoc and Rivier. The polypeptide chains correspond
to the type{2} helices of these structures. Other edges and edges of the
central undeformed B-C structure (omitted for clarity) correspond to
hydrogen bonds.

DEFECTS IN THPS AND NANOTUBES

If a net on a curved surfaces is adjusted so that all
(straight) edge lengths are equal, it is obvious that the cur-
vature properties of the surface and the connectivity prop-
erties of the net will be intimately related. Although no
general theory exists, various fascinating structures have
been explored, corresponding to the decoration of curved
surfaces by graphite sheets containing defects; five-rings
among the hexagons correspond to regions of positive
Gaussian curvature, while seven- and eight-rings corre-
spond to regions of negative Gaussian curvature [12–15].
Of special interest are the triply periodic minimal surfaces,
tiled by hexagons and octagons.

A well-known topological relation satisfied by a tri-
angulation of a surface of genusg (Euler characteristicχ )
is

3n3+ 2n4+ n5− n7− 2n8− 3n9− . . .
= 6(2− 2g) = 6χ (23)

whereni is the number ofi -connected vertices. The same
relation is satisfied by the dual configuration: a tiling of
the surface, withni i -gonal tiles. This purely topological
relation is linked to curvature properties of the surface
through the Gauss–Bonnet theorem,∮

KdS= 2πχ (24)

whereK is Gaussian curvature.
Thus, for example, a tiling of the sphere (g = 0)

by hexagons and pentagons must contain exactly 12
pentagons—a topological fact demonstrated in nature
by the structure of the fullerenes. An equilateral net of
hexagons, heptagons, and octagons may be associated
with surfaces of negative Gaussian curvature. Mackay and
Terrones [12] demonstrated the decoration of the triply
periodic minimal surfacesP and D surfaces (g = 3, per
unit cell) by graphite sheets that contain 12 octagons per
unit cell. In the present work, we have chosen to restrict

attention to the Euclidean geometry of various structures.
Mention must be made at this point, however, of the ge-
ometry of the hyperbolic plane as a valuable tool in the
study of networks on surfaces of negative Gaussian cur-
vature. For recent important results, the interested reader
is referred to the work of Hyde and co-workers [16–18].

Observe that in a plane (or cylindrical) hexagonal
lattice, a composite “5–7 defect” consisting of a five-
coordinated vertex and a seven-coordinated vertex does
not affect the genus. It gives rise to adislocationof the
lattice. Defects of this kind may be classified in terms of a
pair of integers (p, q), which specify, in a hexagonal coor-
dinate system associated with the lattice, the displacement
of the five-vertex from the seven-vertex. The Burger’s
vector associated with a 5–7 defect of type (p, q) is
(p− q, p). Thedualof the above statements concern nan-
otubes, which can have analogous 5-7 defects consisting
of a five-ring and a seven-ring. The Burger’s vectors of a
pair of such composite defects may cancel. This kind of
defect has been discussed by Stone and Wales [19] in the
context of fullerene structure.

The incorporation of five-rings and seven-rings (in
equal numbers) into a nanotube can cause it tube to be bent,
by producing regions of positive and negative Gaussian
curvature (helically coiled nanotubes have been observed).
The exact relationship between the location of five-rings
and seven-rings, and the resulting bending effect, is a dif-
ficult problem, which we shall not enter into here. The
aim of this section will be simply to demonstrate how two
TPHs of different types can be joined through a region
containing a (p, q) defect. In particular, the radius of a
nanotube may be varied along the length of the tube, by
the introduction of five-rings and seven-rings (in equal
numbers).

Figure 12 shows a net for constructing a THP with a
(2, 2) defect. The net is to be folded along the grid lines
to bring the edges marked with the same letter together,
as in making card models of Platonic or Archimedean
polyhedra. The three points indicated by the black circles
becomes a single seven-connected vertex. The point indi-
cated by the white circle becomes a five-connected vertex.
Observe that the lower half of the THP will be a (3, 5, 8)L,
while the upper half is a (1, 5, 6)L. We may write this in
the form

(2, 2) : (3, 5, 8)L →(1, 5, 6)L (25)

Figure 13 demonstrates similarly the case

(2, 4) : (2, 4, 6)L → (2, 4, 6)R (26)

A CHL or a THP of type (m, n) can be joined to one of
type (m′, n′), through a region containing a (p, q) defect.



P1: HAA

Structural Chemistry (STUC) PP507-373168 June 9, 2002 13:23 Style file version May 25, 2002

312 Lord

Fig. 12. Net for the construction of a TPH with atype (2, 2) defect.
Observe that the lower half gives rise to a (3, 5, 8)L; the upper half
produces a (1, 5, 6)L.

We find that (
m′

n′

)
=
(

m− n+ q
m+ q − p

)
(27)

for example, (p, q) = (1, 2), (m, n) = (2, 3). Then
(m′, n′) = (1, 3). Therefore

(1, 2) : (1, 2, 3)L → (1, 2, 3)R (28)

The handedness changes because converting (1, 3) to the
three-index symbol (1, 2, 3) satisfying the inequalities
(2.1) involves areflection. This case corresponds sim-
ply to two mirror-twinned B-C structures; the situation is
illustrated in Fig. 14.

MISCELLANY

Any Euclidean transformation

x′ =Rx+ a (29)

Fig. 13. Net for the construction of a “mirror twin” (2, 4): (2, 4, 6)L →
(2, 4, 6)R.

Fig. 14. A mirror twin of two B-C structures and the net for constructing
a model of it. Observe the 5-7 defect of type (1, 2).

is uniquely determined if the four image points of four
given nonplanar points are given. Writing the position
vectors, referred to a cartesian coordinate system, of four
given points as the columns of a 3× 3 matrix A, and their
four images as the corresponding columns of a matrixB,
the transformation is given by

S=
(

R a
0 1

)
=
(

B 0
j 1

)(
A 0
j 1

)−1

(30)

wherej denotes the row 111. The Eq. (16), from which
the metrical parameters of the B-C structure were de-
duced, are obtained from this prescription. The method
is, clearly, readily applicable to the generation of more
general structures from a given subunit once the position
and orientation of a contiguous subunit is chosen. The
tiling of three-space by face-sharing polyhedra is a concept
fundamental to the understanding of many complex mate-
rial structures. Structures built from identical face-sharing
polyhedral subunits are readily deduced from the prescrip-
tion (30). A transformationScan be computed from two
chosen congruent faces of a polyhedron. Repeated ap-
plication of S will then produce a structure with helical,
zigzag, or ring form according to the nature ofS (some
possibilities lead to steric hindrance). The purpose of this
final section is simply to illustrate this by means of a few
curious examples.

Two examples of of helical structures built from poly-
hedral subunits are the “octahelix” and the “icosahelix”

Fig. 15. Pearce’s octahelix inscribed in a B-C structure.
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Fig. 16. Pearce’s icosahelix inscribed in an octahelix.

of Pearce [20]. Figure 15 indicates that the vertices of the
octahelix are the midpoints of the edges of a B-C structure
and Fig. 16 indicates that the vertices of the icosahelix
are at golden mean positions on the edges of an octahelix.
Other helical towers of octahedra, or of icosahedra, with
different pitches, can be generated by choosing different
orientation relationships for the initial pair of subunits,
giving rise to different screw transformationsS. Figure 17,
for example, is another “octahelix,” with a steeper pitch
than the Pearce octahelix and Fig. 18 is a ring of twelve
octahedra slightly distorted icosahedra generated by a
roto-reflection. The helix of interpenetrating icosahedra
in Fig. 19 is generated from a screw transformationS
that relates two pentagonal sections of the icosahedral
subunit.

A polygonal subunit for the generation of helical
structures can be chosen to be a portion of the B-C struc-
ture. This corresponds to the systematic introduction of
defects along the length of the TPH (1, 2, 3). The remark-
able ring structure (Fig. 20) consisting of 96 tetrahedra was
discovered by Antoine Walter [21]. The subunit is a por-
tion of the B-C structure consisting of six tetrahedra. The
easiest way to understand the structure is to consider the
smaller subunit of three tetrahedra (Fig. 21). The mirror
symmetry of this subunit implies that the two face medi-
ans marked on the figure intersect. A simple calculation
gives the angleθ between them, cosθ = 53/54, θ ∼ 11◦.
A twofold rotation about one of them produces a set of
six tetrahedra of a B-C structure. The product of the two
twofold rotations is a rotation through about 22◦, whose
repeated action gives a ring of 32 of the six tetrahedron
units, which does not quite close. A slight deformation

Fig. 17. An octahelix with steeper pitch.

Fig. 18. A ring of twelve (slightly distorted) octahedra, generated by a
roto-reflection; and the twelve inscribed icosahedra.

Fig. 19. A helical structure of interpenetrating icosahedra. Observe that
every pair of consecutive icosahedra is a “mirror twin” with the mirror
perpendicular to the fivefold axis.

Fig. 20. The ring of 96 tetrahedra discovered by Antoine Walter. The
subunit is a sequence of six of the tetrahedra of a B-C structure.

Fig. 21. Three tetrahedra. The ring of 96 tetrahedra is generated by
twofold rotations about the face medians marked in the figure. Very
slight deformation of the tetrahedra is necessary for exact closure of the
ring, as explained in the text.
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increasing the angleθ to 360◦/32= 111/4
◦ produces the

96-tetrahedron ring.

CONCLUSIONS

Nanotubes, protein helices, and the sphere packings
investigated by Boerdijk, have this in common: their struc-
tures are underpinned by the Euclidean geometry of trian-
gulated helical polyhedra. The geometrical properties of
the THPs provide a simple introduction to these important
structures and methods of computing their metrical and
topological properties can be employed in the production
of graphic representations.
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