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Helical Structures: The Geometry of Protein Helices
and Nanotubes
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In nature, helical structures arise when identical structural subunits combine sequentially, the orien-
tational and translational relation between each unit and its predecessor remaining constant. A helical
structure is thus generated by the repeated action of a screw transformation acting on a subunit. A
plane hexagonal lattice wrapped round a cylinder provides a useful starting point for describing the
helical conformations of protein molecules, for investigating the geometrical properties of carbon
nanotubes, and for certain types of dense packings of equal spheres.
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INTRODUCTION The purpose of this work is twofold: to derive ex-
pressions for the metrical and topological parameters of

An infinite strip of a tiling of the Euclidean plane the triangulated helical polyhedra and to indicate their

by equilateral triangles, bounded by two parallel lines, importance by means of examples from the literature on

can be wrapped around a circular cylinder so that the two protein helices, sphere packings, and nanotubes.

strip edges meet. We shall refer to the resulting struc-

ture as acylindrical hexagonal latticer, briefly, aCHL.

Alternatively, instead of rolling the strip around a cylin- NOMENCLATURE

der, corresponding points on the edges may be brought

into coincidence by folding along the fundamental lattice A THP, or a CHL, is determined by the translation

lines, keeping the triangular facets flat. We shall refer to the vector separating pairs of points on the strip boundaries

resulting structure asteangulated helical polyhedroar, that are to be identified. Let the components of this vec-

briefly, aTHP. A THP is an “almost regular” polyhedron,  tor, referred to the underlying planar hexagonal coordi-

in that its symmetry group, a rod group, acts transitively nate system, ben{, n). The 6m symmetry of the plane

on the vertices and faces, although not on the edges. hexagonal lattice implies that the integer pains, (),
The geometrical properties of the THPs are of rele- (—|, m), (—n, —I), (-m, —n), (I, —m), and @, |) all

vance in structural chemistry for several reasons. As Sadocgive rise to thesamestructure andr(, m), (I, n), (—m, 1),

and Rivier [1] have shown, the helical structures com- (—n, —m), (—I, n), and (, —I) refer to its mirror image

monly occurring in proteins are metrically quite close to (wherel = n —m.) The rebundancy in the notation is

polygonal helices consisting of edges of THPs. Therodlike eliminated by the requirement

sphere packings investigated by Boerdijk [2] are derived

from the Coxeter helix [3-5], which is the simplest THP. O<l<ms<n=Il+m @)

In a nanotube, the atomic positions correspond to a subsetrpys each kind of THP (or CHL) may be denoted by a
of the vertices of a THP. uniquesymbol {, m, n). (See, for example, Sadoc and
_ Rivier [1].)

1This contribution is part of a collection titled Generalized Crystallogra- Except for the special cases (@, m) and (n, m

hy and dedicated to the 75th anni f Prof Alan L. Mackay, ; .
‘;Rysa“ edicatediothe annversaty otroressor Alan - Mackay. 2m), the CHLs are chiralil( m, n)R has, by convention,

2Department of Metallurgy, Indian Institute of Science, Bangalore ight-handed{l} and{n} type helices and thgm} type is
560012, India. left-handed. The mirror image df,(m, n)R is, of course,
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Fig. 1. Construction of the CHL (3, 5, 8).

denoted byl(, m,n)L. Figure 1illustrates the case (3, 5, 8).

Lord

where A = /(u? +v? — pv), k= /(m?+n?—mn).
Then the coordinates of the point,(v) in 3-D Euclidean

space are

(-8

= | 2r{(m—n/2u + (- m/2p/K2 | (3)
V3w — mv)/k
The{l}, {m}, and{n} type helices are, respectively, along
[—1,-1], [0, 1], and [-1, 0], so that theirotational ad-
vances per edgare

7(—m—n)/k?,

k/2m
(rcosy)/p
ASino

70— m)/ K2
(4)

7 +1)/K2,

The direction of the strip edges can be arbitrary. Three and thetranslational advanceare

special choices are indicated on the figure: strips with
widths 3, 5, and 8 of the elementary equilateral triangles,

along the directions [1, 1], [1, 0], and [0, 1], respectively.

V37K, 3m/k),  /3(n/K) (5)

The corresponding lines of lattice points become helices \\ETRICAL PARAMETERS OF A THP

on the cylinder: Three helices of tyg}, five of type{5},
and eight of typg8}. Figure 2 illustrates a portion of the
THP of type (3, 5, 8l)..

METRICAL PARAMETERS OF A CHL

A vertex of a plane hexagonal lattice can be identi-
fied by two integers, v) — its coordinates in terms of
the hexagonal coordinates. In a CHL, the pojnt ) ac-
quires a position on the cylinder, with three-dimensional
(3-D) cylindrical coordinates, ¢, ), which can be found
as follows. On the plane hexagonal lattice the angle
between the directiongi( v) and {n, n) is given by

cosx = {(Mm—n/2)u + (n — m/2)v}/Ak,

sine = /3(nu — mv)/2xk (2

Fig. 2. The triangulated helical polyhedron (3, 5L8)

Sadoc and Rivier [1] have identified several well-
known helices occurring in protein structure with tyji¢
helices of THPs of the form (i, m + 1):

m = 2: the 3 helix
m = 3: thex helix
m = 4: thex helix
m = 5: they helix.

See, for example, Lehninger, Nelson, and Cox [6] for the
structure and nomenclature of the corresponding protein
configurations. In these models, the ty{dg polygonal
helix represents the polypeptide chain. Other edges of the
TPH correspond to the linking hydrogen bonds that are
responsible for the helical configuration.

The method of Sadoc and Rivier for computing the
metrical parameters of TPHs of the special kind (i,
m+ 1) is as follows. Let .. A_o A_; Ag A1 Ay Az ...
denote the sequence of successive vertices of theiype
helix of the TPH (1, m, m+ 1) and observe that
AoAnAnm1 is a face—an equilateral triangle. Choose
Cartesian coordinates so that,Ahas coordinates
p(cosmg, sinmg, mc) and equate the three edge lengths
AocAm, AoAm+1 and A‘nAerl = ApA;. This gives

c? — 2cog = m?c? — 2cosng

= (m+ 1)°c? — 2cosm + 1)p.  (6)
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Fig. 3. Projection of a triangular facet of a THP, along the axis, and
perpendicular to the axis.

Eliminating ¢? and expressing casp and cosf + 1)

as polynomials iny = cosp gives a polynomial iny of
degreem + 1. It can be shown that this polynomial has
a factor ¢ — 1)?, so we finally arrive at a polynomial

in x of orderm — 1. Only one root (in fact, the largest
root) is relevant; the other roots correspond to triangulated
surfaces with self-intersections.

Consider now more general casksi, n). For large
vectors (n, n) it is obvious that the formulas for the pa-
rameters of a CHL will give reasonable approximations to
those for the corresponding THP. For smaller values we
resort to Fig. 3, which represents the projection of a THP
on planes perpendicular and parallel to its axis, of the
edges of a constituent equilateral triangle. To find the ra-
dius p, we start from the formula for the circumradius of
a triangle with edgek, I, andls
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From Fig. 3, we see that

V-1 + VA -13) = V(2 -1)

and

my/(1-13) =n/(1-1%) 9)

307
so thatl, andls can be expressed as functiond of
1-15=(1-12)(n/1)%
1-13 = (1-1%)(m/1)? (10)

Thus, we get the radiysas a function off. Now observe
thatm steps of arin} helix followed byn steps of arijm}
helix brings one back to the starting vertex. The path has
rotational advances2 From the figure, we see that the
rotational advance per edge length is 23{tv/2p) for

the type{m} helices and 2sint(I3/2p) for the type{n}
helices. This gives

msin(13/20) + nsin"(1/2p) = 7 (11)

leading to a quite formidable transcendental equatitf in
The relevant root is the smallest root. A suitable starting
value for finding this root by successive approximation
can be taken to be the& for the corresponding CHL,
(m+ n)?/4(m? +n?> — mn). Table | gives the metrical
parameters obtained in this way, using Mathematica, for a
few small values ofrf, n). The final column is the radius
pchL of the corresponding CHL, for comparison:

k /M2 4+n2 —mn
=— =" 12
PCHL - 2 (12)

The corresponding values for thetational andtransla-
tional advanceper edge of the polygonal helices of types
{1}, {m} and{n} are

¢1, @2, @3 =2sim(11/20), 2sin(12/2p),

2sin(13/2p) (13)
7, 2p, Z3, =\/(l—|f), \/(l_lg)’
V-3 a4

Table I. Parameters for THPs for Small Values bfrf, n)

Imn Iy P PCHL

123 0.94868 0.51962 0.42108
224 0.86603 0.61237 0.55133
134 0.97207 0.64526 0.57384
135 0.91821 0.74313 0.69374
145 0.98255 0.78561 0.72934
246 0.94547 0.88462 0.84217
347 0.90435 1.00188 0.96810
156 0.98811 0.93258 0.88614
257 0.96118 1.03166 0.99392
358 0.92881 1.14441 1.11408
459 0.89632 1.26887 1.24304
167 0.99139 1.08319 1.04365
268 0.97100 1.18076 1.14768
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Fig. 4. The Boerdijk—Coxeter structures (1, 2R8and (1, 2, 3.

Cases (0m, m) and (n, m, 2m) have not been listed in the

table because they are given, respectively, by the simple

formulas

p = 1/2sinfr/m) and

0 = /3/4sin(w/2m)
(15)

THE BOERDIJK—-COXETER STRUCTURE

The simplest nontrivial THP is (1, 2, 3) shown in

Fig. 4. It is the surface of a stack of regular tetrahedra.

Lord

The translational advancts the scalar product af with
a tetrahedron edge. The result is

n=(210)//5  ¢=cos(-2/3),
d=1/10 (18)

The radius is got by substituting = 4/(9/10), I, =
J(6/10), I3 = /(1/10) into the formula fop:

p = (3/3)/10. (19)

SPHERE PACKINGS

Boerdijk [2] investigated the Coxeter structure [the
THP (1, 2, 3)] in connection with dense packings of equal
spheres. The configuration of four spheres in a tetrahe-
dral configuration, each touching other three, gives the
Rogers upper bound for the upper limit of any possible
packing fraction for equal spheres. The bound can never
be achieved because regular tetrahedra will not pack to-
gether in Euclidean. However, sphere packings that fill
only a portion of space can come much closer to the bound
than hexagonal close packing—the densest lattice pack-
ing. Boerdijk considered the dense rod-shaped packing in

We shall refer to it as the Boerdijk—Coxeter structure, or, \which the sphere centers lie on the vertices of a (1, 2, 3)

simply, the “B-C structure.” The vertices, labeledA_,
A_; Ap A1 Az As...consecutively along the typfl}
helix are such thaany four consecutive poin@re the
vertices of a regular tetrahedron[3-5]. Buckminster
Fuller [7] named this helical structure “the tetrahelix.”
With unit edge length, five consecutive points on the type
{1} polygonal helix can be taken to be

(_1’ _1’ _1)/\/8’ (_1’ 17 1)/\/8a
(17 _19 1)/\/8’ (1’ 19 _1)/\/8’
(5/3.5/3,5/3)/8.

The action of ascrew transformatiox — Rx + a gener-
ates the whole structure, where

1({ 2 2 1 1/3J2

R:§ 2 -1 -2|, a=[13/2] @16)
-1 2 =2 1/32

Theaxis directionn and therotational advance per edge

¢ (of the type{1} polygonal helix) can be extracted from

the formula for rotation through an angpeabout an axis
along a unit vecton:

R = | + Nsing + N2(1 — cosy),

0 —N3 Ny
N = n3 0 —n]_
—Ny Ny 0

17

(Fig. 5).

EXTENSION OF THE HELICAL
SPHERE PACKING

As pointed out by Boerdijk, the packing of spheres
centred at the vertices of (1, 2, 3) can be extended by
adding more spheres over the midpoints of edges of type
{1} helices. Specifically, an extra vertex is placed over the
midpoint of each edge of the tydé&} helix, forming an
equilateral triangle with the two vertices of that edge. This
determines additional, only slightly irregular, tetrahedra,

Fig. 5. The dense packing of spheres centered at the vertices of a B-C
helix.
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Fig. 7. Further extension of Boerdijk’s sphere packing, represented by
tetrahedra whose vertices are the sphere centers. Every sphere of the
original configuration (Fig. 5) is now the center of a 13-sphere cluster.

this for the case (4, 7, 11). The algorithm described in
the fourth section for determining the metrical properties
of the THPs is thus applicable to the structure of carbon
nanotubes.

Nanotubes [8, 9] can be classified by a pairs of inte-
gers M, N], corresponding to the numbers of helices of
edge-connected hexagons that wind around the nanotube
to left and right. The relation between thm,(n) of a THP

Fig. 6. Extension of the sphere packing. Sphere centers are at verticesgnd the M, N] describing this subset of its vertices that
of the tetrahedra. The additional tetrahedra are very nearly regular. corresponds to the atoms of a nanotube is

so that every edge of the tygé} helix is shared by five M = (m+n)/3, N = (2n —m)/3
tetrahedra (Fig. 6)

Further extensions of the Boerdijk—Coxeter structure m=2M —N, n=M+N (20)
are possible. The next stage of adding spheres gives a  For example, starting with a (4, 7, 11), the formu-
rodlike structure in which every vertex of the original |as give (7, 11)— [6, 5]. This corresponds to thgtan-
(1, 2, 3) is surrounded by twelve others, configured as gard triplet [1, 5, 6]. That is, the THP (4, 7, 11) gives
a somewhat distortettosahedronas shown in Fig. 7. rise to a metrical model for the nanotube [1, 5, 6]. More
Thus each tetrahedron of the initial (1, 2, 3) is now shared specifically, since &flectionis involved in the coordinate

by four icosahedra. This 26-sphere cluster is a slightly resetting of the final step, (4, 7, 11L)— [1, 5, 6]R.
distorted form of the 26-atom-brass cluster. Another in-

teresting subset of the tetrahedra in this structure is the
triplet of distorted B-C helices twisted around each other

(Fig. 8). One could go on adding more spheres, but the
deviation of the tetrahedra from regularity (corresponding

to lower sphere packing fraction) becomes severe.

NANOTUBES

Whenm + n is divisible by three, the THP of type
(I, m, n) can be converted to a model for a net of equilateral
hexagons with all vertices lying on a cylinder, simply by
omitting one in three of the vertices. Figure 9 illustrates Fig. 8. Configuration of three helically coiled B-C structures.
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The density of a carbon nanotube of a given structural
type (, m, n) is readily calculated. The typg} polygo-

nal helices have a rise per edge.@8(n/k) (using the
approximation given by the CHL formula). The num-
ber density of vertices per unit advance along the cylin-
der axis is, therefores/n,/3. There aren type {n} he-
lices. In the carbon nanotube model, one-third of them are
hexagon centers, so the number of carbon atoms per unit
length of the nanotube i%k23,/3. The C-C bond length

B is the unit of length. Denoting the mass of a carbon
atom byM, we get, for the mass per unit length of the
nanotube,

2kM/3B./3 = 47RM/3B2,/3 (22)

whereR is the radius out to an atom center—the average
of internal and external radius. For example, takiig=
1073 gm andB = 1.42 A (from graphite), gives 52 x
10-14 gm/cm for the case (4, 7, 11), corresponding to the
[1, 5, 6] nanotube.

COLLAGEN AND THE POLYTOPE {3, 3, 5}
Fig. 9. The [1, 5, 6] nanotube derived from the (4, 7, 11) TPH. The regular four-dimensional p0|yt0[§3, 3, 5 has
120 vertices, 1200 edges, 720 equilateral triangle faces,
The “chair” and “zigzag” type nanotubes (Fig. 10) and 60Qegular tetrahedratells. Five cells surround each

are given by edge and twenty surround each vertex—formimegalar
icosahedror4, 5, 10].
(0, 3, 3u) — [, . 2] and (@, 1, 211) — [0, e, . Circuits of 30 face-sharing tetrahedra occur in
{3, 3, 3. They are each metrically identical to the
(21) Boerdijk—Coxeter structure in 3-D Euclidean space. One

can select four of them forming a configuration, which,
when deformed to fit into 3-D Euclidean space, can
give a fairly accurate structure of tleellagen molecule
Collagen consists of three left-handed helical polypep-
tide chains twisted around each other with a right-handed
helical twist [6]. In the model of Sadoc and Rivier [1],
derived from the corresponding structure in the polytope
{3, 3, 3, a central B-C structure (1, 2, R)is surrounded
by three somewhat distorted B-C structures (1, R 3)
each sharing a typ€3} helix with it. The polypeptide
chains correspond to theft-handed typ¢2} helices of the
three outer structures. Other tetrahedron edges represent
hydrogen bonds.

We have already noticed the geometrical structure in
the extension of the Boerdijk's sphere packing (Fig. 8).
The pictures displayed in Fig. 11 was obtained by pro-
jecting from{3, 3, §[11]. Observe that the structures dif-
fer in pitch; in Fig. 8, the central core B-C structure is
undistorted, whereas in Fig. 11, a slight untwisting has
Fig. 10. The [0, 10, 10] “zigzag type” nanotube and the [5, 5, 10] been applied to conform to give the pitch observed in the

“chair type.” collagen structure.
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attention to the Euclidean geometry of various structures.
Mention must be made at this point, however, of the ge-
ometry of the hyperbolic plane as a valuable tool in the
study of networks on surfaces of negative Gaussian cur-
vature. For recent important results, the interested reader
is referred to the work of Hyde and co-workers [16—18].
Observe that in a plane (or cylindrical) hexagonal
Fig. 11. General view of the three outer B-C structures of the collagen |attice, a composite “5—7 defect” consisting of a five-
moge' p“’pgsf‘gﬁ’geiao‘m ::edsFiir\S;rﬁrTeZe F(’)‘;E’epreé’gdeeSCZﬁg‘zgogsez?(t’g‘:coordinated vertex and a seven-coordinated vertex does
tcc;;tfafyl?:ije}formed B-C structure (omitted for cla?rity) corresgpond to nOt_ affect the genus_. It_ gives rise todask_)_catpnof the
hydrogen bonds. lattice. Defects of this kind may be classified in terms of a
pair of integers p, q), which specify, in a hexagonal coor-
dinate system associated with the lattice, the displacement
DEFECTS IN THPS AND NANOTUBES of the five-vertex from the seven-vertex. The Burger's
vector associated with a 5-7 defect of type €) is
If a net on a curved surfaces is adjusted so that all (p — g, p). Thedualof the above statements concern nan-
(straight) edge lengths are equal, it is obvious that the cur- otubes, which can have analogous 5-7 defects consisting
vature properties of the surface and the connectivity prop- of a five-ring and a seven-ring. The Burger’s vectors of a
erties of the net will be intimately related. Although no pair of such composite defects may cancel. This kind of
general theory exists, various fascinating structures havedefect has been discussed by Stone and Wales [19] in the
been explored, corresponding to the decoration of curved context of fullerene structure.
surfaces by graphite sheets containing defects; five-rings The incorporation of five-rings and seven-rings (in
among the hexagons correspond to regions of positive equal numbers)into a nanotube can causeittube to be bent,
Gaussian curvature, while seven- and eight-rings corre- by producing regions of positive and negative Gaussian
spond to regions of negative Gaussian curvature [12—15]. curvature (helically coiled nanotubes have been observed).
Of special interest are the triply periodic minimal surfaces, The exact relationship between the location of five-rings

tiled by hexagons and octagons. and seven-rings, and the resulting bending effect, is a dif-
A well-known topological relation satisfied by a tri-  ficult problem, which we shall not enter into here. The

angulation of a surface of genggEuler characteristig) aim of this section will be simply to demonstrate how two

is TPHs of different types can be joined through a region

containing a p, q) defect. In particular, the radius of a
nanotube may be varied along the length of the tube, by
=6(2— 29) = 6x (23) the introduction of five-rings and seven-rings (in equal
numbers).

Figure 12 shows a net for constructing a THP with a
(2, 2) defect. The net is to be folded along the grid lines
to bring the edges marked with the same letter together,
as in making card models of Platonic or Archimedean
polyhedra. The three points indicated by the black circles

3n3+2ns+Ns—ny; —2ng —3Ng — . ..

wheren; is the number of-connected vertices. The same
relation is satisfied by the dual configuration: a tiling of
the surface, withn; i-gonal tiles. This purely topological
relation is linked to curvature properties of the surface
through the Gauss—Bonnet theorem,

f KdS= 27y (24) becomes a single sgven—connected vertex. The point indi-
cated by the white circle becomes a five-connected vertex.
whereK is Gaussian curvature. Observe that the lower half of the THP will be a (3, 5,.8)

Thus, for example, a tiling of the spherg £ 0) while the upper half is a (1, 5, B) We may write this in
by hexagons and pentagons must contain exactly 12the form
pentagons—a topological fact demonstrated in nature
by the structure of the fullerenes. An equilateral net of (2.2):(3,58)L —(1,5,6)L (25)
hexagons, heptagons, and octagons may be associate
with surfaces of negative Gaussian curvature. Mackay and
Terrones [12] demonstrated the decoration of the triply (2,4):(2,4,6)L — (2,4,6)R (26)
periodic minimal surface® and D surfaces@ = 3, per
unit cell) by graphite sheets that contain 12 octagons per A CHL or a THP of type fn, n) can be joined to one of
unit cell. In the present work, we have chosen to restrict type (', n’), through a region containing @,q) defect.

Eigure 13 demonstrates similarly the case
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Fig. 12. Net for the construction of a TPH with atype (2, 2) defect.
Observe that the lower half gives rise to a (3, 5. 8)he upper half
produces a (1, 5, &)

We find that

(7)-(Realh) @
n m—+q-—p

for example, p, q) = (1, 2), (M, n) = (2, 3). Then
(m', n") = (1, 3). Therefore

(1,2):(L23)L — (1.23)R (28)
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Fig. 14. A mirror twin of two B-C structures and the net for constructing
a model of it. Observe the 5-7 defect of type (1, 2).

is uniquely determined if the four image points of four
given nonplanar points are given. Writing the position
vectors, referred to a cartesian coordinate system, of four
given points as the columns of a33 matrix A, and their
four images as the corresponding columns of a marix
the transformation is given by

R a B 0\/A O\’
(50" @

wherej denotes the row 111. The Eq. (16), from which
the metrical parameters of the B-C structure were de-
duced, are obtained from this prescription. The method

The handedness changes because converting (1, 3) to thgy clearly, readily applicable to the generation of more
three-index symbol (1, 2, 3) satisfying the inequalities yenera) structures from a given subunit once the position

(2.1) involves areflection This case corresponds sim-
ply to two mirror-twinned B-C structures; the situation is
illustrated in Fig. 14.

MISCELLANY

Any Euclidean transformation

x =Rx+a

(29)

Fig. 13. Net for the construction of a “mirror twin” (2, 4): (2, 4, 6)—
(2,4, 6R.

and orientation of a contiguous subunit is chosen. The
tiling of three-space by face-sharing polyhedrais a concept
fundamental to the understanding of many complex mate-
rial structures. Structures built from identical face-sharing
polyhedral subunits are readily deduced from the prescrip-
tion (30). A transformatiors can be computed from two
chosen congruent faces of a polyhedron. Repeated ap-
plication of Swill then produce a structure with helical,
zigzag, or ring form according to the nature {some
possibilities lead to steric hindrance). The purpose of this
final section is simply to illustrate this by means of a few
curious examples.

Two examples of of helical structures built from poly-
hedral subunits are the “octahelix” and the “icosahelix”

Fig. 15. Pearce’s octahelix inscribed in a B-C structure.
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Fig. 16. Pearce’s icosahelix inscribed in an octahelix.

Fig. 18. A ring of twelve (slightly distorted) octahedra, generated by a

. L . roto-reflection; and the twelve inscribed icosahedra.
of Pearce [20]. Figure 15 indicates that the vertices of the

octahelix are the midpoints of the edges of a B-C structure
and Fig. 16 indicates that the vertices of the icosahelix
are at golden mean positions on the edges of an octahelix.
Other helical towers of octahedra, or of icosahedra, with
different pitches, can be generated by choosing different
orientation relationships for the initial pair of subunits,
giving rise to different screw transformatio8s-igure 17,

for example, is another “octahelix,” with a steeper pitch
than the Pearce octahelix and Fig. 18 is a ring of twelve
octahedra _Sllghtly dISt(.)rted _|cosahedra _gen_erated by aFig. 19. A helical structure of interpenetrating icosahedra. Observe that
roto-reflection. The helix of interpenetrating icosahedra every pair of consecutive icosahedra is a “mirror twin” with the mirror
in Fig. 19 is generated from a screw transformat®n  perpendicular to the fivefold axis.

that relates two pentagonal sections of the icosahedral
subunit.

A polygonal subunit for the generation of helical
structures can be chosen to be a portion of the B-C struc-
ture. This corresponds to the systematic introduction of
defects along the length of the TPH (1, 2, 3). The remark-
ablering structure (Fig. 20) consisting of 96 tetrahedra was
discovered by Antoine Walter [21]. The subunit is a por-
tion of the B-C structure consisting of six tetrahedra. The
easiest way to understand the structure is to consider the
smaller subunit of three tetrahedra (Fig. 21). The mirror
symmetry of this subunit implies that the two face medi-
ans marked on the figure intersect. A simple calculation
gives the anglé between them, cas= 53/54, 6 ~ 11°.

A twofold rotation about one of them produces a set of
six tetrahedra of a B-C structure. The product of the two
twofold rotations is a rotation through about°2#hose

repeated action gives a ring of 32 of the six tetrahedron
units, which does not quite close. A slight deformation

Fig. 20. The ring of 96 tetrahedra discovered by Antoine Walter. The
subunit is a sequence of six of the tetrahedra of a B-C structure.

Fig. 21. Three tetrahedra. The ring of 96 tetrahedra is generated by
twofold rotations about the face medians marked in the figure. Very

slight deformation of the tetrahedra is necessary for exact closure of the
Fig. 17. An octahelix with steeper pitch. ring, as explained in the text.
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increasing the angleto 360 /32 = 11%/,° producesthe =~ REFERENCES
96-tetrahedron ring.
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