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Abstract
The vacancy-ordered phases known as t phases are described and the

literature dealing with the observed stacking sequences is reviewed. It is shown
that the stacking sequences along the threefold axis can be derived from a
projection method involving projection on to an axis of type ‰rrqqŠ. The
structure has alternating ®lled and empty lamellae parallel to planes of type
…rrqq). The particular cases in which r and q are consecutive numbers of the
Fibonacci sequence can be regarded as rational approximants to a one-
dimensional quasiperiodic structure. Some mathematical properties of the
sequences, and their relationship with the three-dimensional structures, are
presented.

} 1. Introduction
The vacancy-ordered phases known as t-phases are B2 structures in which the

vertices of one of the two constituent primitive cubic lattices are occupied by alu-
minium atoms and those of the other are occupied by transition-metal atoms or are
vacant sites. The (111) planes are either completely ®lled or completely empty, with
characteristic periodic stacking sequences along the [111] direction.

The stacking sequences for a large number of t phases are now known. A t5

phase Al5Cu2Ni was reported by Bingham and Haughton (1923) and the structure of
the t3 phase Al3Ni2 was elucidated by Bradley and Taylor (1937). The most extensive
investigation is the work of Lu and Chang (1957) in which the Al±Cu±Ni system was
explored and stacking sequences determined, for tp phases with
p ˆ 5; 6; 7; 8; 11; 13; 15 and 17. The X-ray diŒraction analyses of van Sande et al.
(1978) con®rmed the evidence for

t2; t3; t5; t8 and t13 …1†

but did not encounter the other members on list given by Lu and Chang.
A very striking feature of the list (1) is as follows: the lengths of the repeat units

of the stacking sequences are terms in the Fibonacci sequence. Motivated by this
observation, Chattopadhyay et al. (1987) were led to the discovery that the actual
stacking sequences of these phases are in fact rational approximants to the well-
known quasiperiodic sequence generated by the iteration rule 0 ! 1, 1 ! 10 (Elser
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1985, Katz and Duneau 1986, Levine and Steinhardt 1986). Here and in what
follows, 1 and 0 denote occupied and vacant sites respectively.

} 2. Computation of the periodic sequences
Figure 1 illustrates a particular example: a t8 structure, viewed along [1110]. Only

the transition-metal atoms and vacant sites are indicated (denoted by full and open
circles respectively); the aluminium atoms have been omitted. Denoting occupied
sites by the symbol 1 and vacant sites by 0, the repeat unit for the stacking sequence
along [111] in this example is 11011010. Observe, however, that the sequence along
[3355] is 11111000. This strongly suggests that the characteristic [111] stacking
sequence observed in ½8 might be a consequence of growth of the structure along
[3355], whereby lamellae of occupied sites (parallel to the (3355) planes) alternate with
lamellae of vacancies. The purpose of this paper is to generalize this observation.

Consider the eŒect of the vacancy ordering of the central sites of a cubic lattice
produced by the stacking sequence : : :1q0r1q0r1q0r : : : along the [rrqq] direction. It will
be convenient to adopt the symbol {p=q}, where p ˆ r ‡ q, to refer to this structure
or to its stacking sequence along [111], or to the repeat unit of the sequence. The
projection operator for orthogonal projection of 3-space on to the line through the
origin, in the [rrqq] direction, is

P ˆ 1

2r2 ‡ q2

r2 r2 rq

r2 r2 rq

rq rq q2

…2†
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Figure 1. A t8 structure viewed along the ‰1110Š axis, showing the periodic stacking of layers
perpendicular to ‰3355Š.



Choosing the origin at an occupied site lying in the ®rst plane of the sequence 1q0r,
the general point (x; y; z) projects to the point on the line located at distance

r…x ‡ y† qz

…2r2 ‡ q2†1=2

from the origin. The presumed sequence along [rrqq] then implies that any point
(x; y; z) of the lattice of vacant and occupied sites (x; y and z integers) is occupied
if and only if

r…x ‡ y† qz ˆ s ‡ Np; 0 4 s < q; N integer:

De®ning

n ˆ x ‡ y ‡ z; …3†
this gives

qn ‡ s ˆ 0 mod p; 0 4 s < q: …4†
Therefore,

n ‡ ­ ˆ mp

q
; 0 4 ­ < 1; m integer;

that is

n ˆ mp

q
; …5†

where ‰xŠ denotes the greatest integer less than or equal to x. Since the projection of
(x; y; z) on the [111] axis is distant n=31=2 from the origin, this formula gives the
stacking sequence of occupied and vacant layers along [111]. For the speci®c example
{8/5} we obtain

m 0 1 2 3 4

mp=q 0 8=5 16=5 24=5 32=5

n 0 1 3 4 6

The sequence along [111] is therefore . . .11011010. . . (as already noted in ®gure 1).
In general, the repeat unit of the stacking sequence along [111], in the {p=q}

structure, is N0N1N2 . . . Np 1, where

Nn ˆ 1 if n ˆ mp

q
for some integer m; 0 4 m < q 1;

0 otherwise:

…6†

} 3. Symmetry properties of the sequences
The periodic sequence . . . 1q0r1q0r1q0r . . . has obvious symmetries: invariance

under reversal about the centre of any 1q or 0r grouping. This corresponds to the
existence of diad axes in the three-dimensional (3D) structure (perpendicular to the
page in ®gure 1, at obvious positions). This in turn implies that the periodic sequence

. . . …N0N1 . . . Np 1†…N0N1 . . . Np 1† . . . also has reversal symmetries. An independent
algebraic proof is not without interest.

The reversal symmetry of an in®nite sequence fNng de®ned by equation (6) is
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Nn ˆ Nµ n …7†
for all n, and for certain values of µ.

Proof: Without loss of generality we may take p and q to be mutually prime
integers. Then, there exist positive integers · < q and ¸ < p, satisfying

¸q ˆ ·p ‡ 1: …8†
(This follows from the fact that the integers »q mod p …» ˆ 1; 2; . . . ; p 1† are all
diŒerent; since p and q are mutually prime, (» » 0†q ˆ 0 mod » implies that » ˆ » 0.
Thus, there exists a ¸ satisfying ¸q ˆ 1 mod p. However, this in turn means that there
also exists a ·, satisfying 0 < · < p and equation (8). Then

· ˆ …¸q 1†=p < q 1=p < q:† De®ne

µ ˆ ¸ 1: …9†
Suppose that Nn ˆ 1, that is, mp ˆ nq ‡ s, 0 4 s < 1. Then m 0p ˆ …µ n†q ‡ s 0,
where m 0 ˆ · m and s 0 ˆ q s 1. Since 0 4 s < q, this establishes that
Nµ n ˆ 1. So, Nn ˆ 1 implies that Nµ n ˆ 1. The converse is an obvious conse-
quence. Therefore, for all n, Nµ n ˆ 1 if and only if Nn ˆ 1. This is the property (7).

&

Example: For {8/5} we have 5¸ ˆ 8· ‡ 1. Then 5¸ ˆ 1 mod 8 gives ¸ ˆ 5,

µ ˆ ¸ 1 ˆ 4. The in®nite sequence generated by the repeat unit 11011010 is there-
fore symmetrical about the second position µ=2 and the sixth position (µ ‡ p†=2 :

. . . 2 1 0 1 2 3 4 5 6 7 8 9 . . .

. . . 1 0 1 1 0 1 1 0 1 0 1 1 . . . :

Another curious property of the sequences {p=q}, perhaps of lesser importance, is
that the repeat unit N0N1N2 . . . Np 1 has the form 1S0 where S is a palindrome.

Proof: N0 ˆ 1, trivially. Np 1 ˆ 0 because otherwise, from equation (4), we would
have q…p 1† ‡ s 0 ˆ 0 mod p, 0 4 s < q, which give the contradiction s ˆ q mod p.
The palindromic property of S, to be proved, is

Nn ˆ Np 1 n; 0 < n < p 1: …10†
De®ne n 0 ˆ p 1 n. Suppose that Nn ˆ 1, that is, qn ‡ s ˆ 0 mod p; 0 4 s < q.
Then, qn 0 ‡ s ˆ 0 mod p, where s 0 ˆ q s, which satis®es 0 < s 0 4 q. However,
s 0 ˆ q implies that s ˆ 0, which corresponds to n ˆ 0 mod p, n 0 ˆ 1 mod p.
Therefore, for 0 < n < p 1, 0 < n 0 < p 1, Nn ˆ 1 implies that Nn 0 ˆ 1, and vice
versa. This establishes the palindromic property (10). &

} 4. Symmetries of the three-dimensional structures
The reversibility property (7) of the stacking sequences implies immediately the

existence of diad axes perpendicular to the triad axis.
The 3D structure repeats itself, along its triad axis, whenever the stacking

sequence, and the layering abcabc. . . of the sequence of (111) planes of the under-
lying cubic lattice, are `in step’. Therefore, a single repeat unit of length p corre-
sponds precisely to a period of the corresponding t phase along its triad axis only if p
is divisible by 3. Otherwise, three repeat units correspond to a period of the 3D
structure.
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From these considerations, it is not di� cult to deduce the symmetry groups and
c=a ratios of the t phases: symmetry P33m, c=a ˆ …p=3†…3=2†1=2; if p ˆ 0 mod 3; sym-
metry R33m, c=a ˆ p…3=2†1=2 otherwise.

For p ˆ 1 mod 3 the edges of the rhombohedral unit cell, referred to the cubic
reference system, are (p ‡ 2, p 1, p 1†=3 and cyclic permutations and for
p ˆ 1 mod 3 they are (p 2; p ‡ 1; p ‡ 1†=3 and cyclic permutations.

The rhombus in ®gure 2 (a) illustrates a unit cell of R33m. (The hexagon indicates
one of the cubes of the underlying cubic lattice.) The numbers indicate the positions
of transition-metal atoms along the triad axes in the structure {8/5} (i.e. the same
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Figure 2. Unit cells of vacancy ordered phases, viewed along the threefold axis: (a) {8/5}
phase, symmetry R33m; (b) {21/13} phase, symmetry P33m1.

(a)

(b)



structure as in ®gure 1), and positions of the diad axes, in units of c=24. Figure 2 (b)
illustrates a unit cell of P33m1 with the positions of transition-metal atoms in {21/13}
and of the diads, given in units of c=21.

The ubiquitous factor (3=2†1=2 is the c/a ratio of Frank’s (1965) `cubic hexagonal’
lattice. This comes about because (3/2)1=2 is the ratio of a main diagonal to a face
diagonal of a cube; Frank’s hexagonal lattice is a sublattice of the primitive cubic
lattice. The t phases contain (decorated) hexagonal prisms with c=a ˆ …3=2†1=2,
which can be regarded as the `building blocks’ of these structures. Ranganathan et
al. (2002) have emphasized the importance of the cubic hexagonal lattice in the
context of other kinds of trigonal and hexagonal structures.

} 5. Fibonacci and non-fibonacci t phases
The Fibonacci scheme discovered by Chattopadhyay et al. (1987) is obviously a

dominant and important feature of the systematics of the t phases. The t phases `of
Fibonacci type’ (which correspond, in our present notation, to the cases in which
r; q; p are successive terms in the Fibonacci sequence) can be regarded as rational
approximants to a `one-dimensional (1D) quasicrystal’ . In the present scheme this
quasiperiodic phase would arise from alternating empty and ®lled lamellae perpen-
dicular to the irrational axis [11½½ ], the ratio of thicknesses being ½ . The periodic
stacking sequences given by equation (5) are rational approximants to the prescrip-
tion

n ˆ ‰m½ Š: …11†
As mentioned earlier, Lu and Chang (1957) gave stacking sequences for the `non-

Fibonacci’ t phases t6; t7; t11 and t17, which the later investigations of van Sande et
al. (1978) did not encounter; these workers found only Fibonacci-type phases.
Shastry et al. (1980) reported the existence of a t12 phase. van Tendeloo et al.
(1989) found t18, t31 and t38 and noted that 18 and 31 belong to non-standard
sequence 8, 5, 13, 18, 31, 49, . . . . Amelinckx et al. (1990) identi®ed the Fibonacci
phases t34 and t55, as well as the non-Fibonacci phases t18, t31 and t38 and used the
`cut-and-projection’ method to obtain plausible stacking sequences.

Lu and Chang (1957) gave the sequences of ®lled (F) and empty (E) unit cubes of
the aluminium lattice, for a string of cubes along the triad axis, rather that the
stacking sequences of occupied (O) and vacant (V) planes perpendicular to the
triad axis. (The VO notation was introduced by van Sande et al. (1978) and has
been adopted by subsequent researchers.) If we denote F by 1 and E by 0, the
sequences M0M1 . . . Mp 1 of Lu and Chang are clearly related to the stacking
sequences according to

Mn ˆ Nn‡3: …12†
(The subscripts here are integers mod p.)

It is not clear what the structures t6 and t15 found by Lu and Chang (1957) could
have been. The reported sequences are F4E2 and F5E3F5E2 respectively. Since p in
both these cases is a multiple of 3, one cannot extract stacking sequences from this
information. In their tabulation, van Sande et al. (1978) omitted to give stacking
sequences for these two cases (obviously, they had encountered this same di� culty).
It is conceivable that the supposed t6 was actually a misidenti®ed t18; {18/11} gives
the stacking sequence 11011010110101101 0 and the length-six sequences F4E2,
F2E2F2 and E2F3E along the three kinds of triad axis.
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Other stacking sequences deduced by van Sande et al. from the data of Lu and
Chang are all derivable from the prescription (4). They correspond to the cases

f2=1g; f3=2g; f5=3g; f7=5g; f8=5g; f13=8g and f17=12g:

The work of Amelinckx et al. (1990) added new members to the list of known t
phases; (in our notation) the Fibonacci types {34/21} and {55/34}, and the non-
Fibonacci types {18/11}, {31/19} and {38/23}.

van Sande et al. (1978) expressed doubts about the t11 obtained by Lu and Chang
(1957), on the grounds that the sequence 00110110011 contains consecutive pairs of
vacant layers, a feature that is absent from all the other phases. They suggested the
more evenly distributed sequence 11010101010 . This is precisely the sequence given
by equation (4) for the case {11/6}.

This question of the `evenness’ of distribution of the observed sequences war-
rants further investigation. Observe that almost all the sequences observed in the t
phases have the property that no two vacant planes occur consecutively, and no
three occupied planes occur consecutively. Exceptions are t1 (no vacancies) and the
t7 phase (Al7…Cu; Ni†5) found by Lu and Chang. These have the sequences given by
{1/1} and {7/5}. The t7 phase given by {7/4}, however, does satisfy the condition.
This particular characteristic of the stacking sequences corresponds to the condition

3
2 4

p

q
4 2: …13†

This assertion can be proved by establishing that a sequence {p=q} can
contain 111 only if p=q < 3=2 and can contain 00 only if p=q > 2. Suppose that
Nn ˆ 1, that is, for some integer m, mp=q ˆ n ‡ ­ , 0 4 2­ < 1. Then
(m ‡ 2†p=q ˆ …n ‡ 2† ‡ 2…p=q 1† ‡ ­ . Therefore Nn‡1 ˆ 1 and Nn‡2 ˆ 1 require
0 4 2…p=q 1† ‡ ­ < 1, which implies that p=q < 3=2. On the other hand,
Nn‡1 ˆ Nn‡2 ˆ 0 (i.e. n ‡ 1 and n ‡ 2 are not of the form [m 0p=q] for any integer
m 0) requires (m ‡ 1†p=q 5 n ‡ 3, that is p=q 5 3 ­ > 2.

Note that, in particular, equation (13) is satis®ed by all the Fibonacci approx-
imants p=q to the golden number ½ ˆ …1 ‡ 51=2†=2 except the ®rst, 1/1. The t12 phase
found by Shastry et al. is presumably {12/7}, since, for p ˆ 12, 7 is the only number q
that is prime to 12 and satis®es equation (13).

The condition (13) can be written in the alternative form

1 4
q

r
4 2: …14†

In terms of our model, consisting of alternate ®lled and empty lamellae perpendicular
to the [rrqq] axis (as in ®gure 1), this has a simple qualitative geometrical interpretation,
namely that the `projection axis’ is nearly perpendicular to the triad axis.

Any binary sequence that contains neither 111 nor 00 can be assembled from the
subunits 10 and 110. Denoting these units by the symbols 2 and 3 provides an
abridged notation for the stacking sequences: the {8/5} sequence 11011010, for
example, is 332. This abridged notation was introduced by van Sande et al. (1978)
and has been adopted by subsequent authors.

} 6. The golden quasiperiodic sequence
When q and p are successive terms in the Fibonacci number sequence de®ned by

f0 ˆ 0; f1 ˆ 1; fN‡1 ˆ fN ‡ fN 1; q ˆ fN ; p ˆ fN‡1 …15†
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(i.e. 1 1 2 3 5 8. . .), the periodic stacking sequences given by equation (4) converge to
the quasiperiodic stacking sequence given by

n ˆ ‰m½ Š; …16†

where ½ is the golden number: ½ ˆ …1 ‡ 51=2†=2 1:618 033 98 . . ..
The resulting quasiperiodic stacking sequence fFng de®ned by

Fn ˆ 1 if n ˆ ‰m½ Š for some integer m

0 otherwise;
…17†

obviously satis®es F 1 ˆ 0, F0 ˆ 1 and F n ˆ Fn 1 except for n ˆ 0 or n ˆ 1. The
beginning of the `right-hand half ’ of the sequence is

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

m 0 1 2 3 4 5 6 7 8

Fn 1 1 0 1 1 0 1 0 1 1 0 1 1 0 . . . :

For any Fibonacci approximant to this sequence (i.e. any sequence {q=p} where q
and p are successive terms of the Fibonacci number sequence),

fp=qg ˆ N0N1 . . . Np 2Np 1 ˆ F0F1 . . . Fp 20: …18†

Proof: Np 1 ˆ 0 has already been established and (trivially) N0 ˆ F0. It remains to
show that

mp

q
ˆ ‰m½ Š; m ˆ 1; . . . ; q 1: …19†

The golden number satis®es the identities

p q½ ˆ … ½† N ; …20†

q½ ‡ r ˆ ½N : …21†

Let ­ be the fractional part of mp=q, that is, mp=q ˆ n ‡ ­ . For 1 4 m 4 q 1, we
have

1

q
4 ­ 4

q 1

q
: …22†

From equation (20), m½ ˆ mp=q m… ½† N ; so that

m½ ˆ n ‡ ­ 0; ­ 0 ˆ ­
m… ½† N

q
: …23†

Because we are considering only values of m that satisfy 1 4 m 4 q 1,

­ 0 >
1

q

q 1

q
½ N ˆ 1 …q 1†½ N

q
:

However, q 1 < q½ ‡ r ˆ ½N . Therefore ­ 0 > 0. Similarly,

­ 0 <
q 1

q
…1 ½ N† ˆ q 1

q
1 ‡ 1

q½ ‡ r
ˆ q 1

q

q½ ‡ r ‡ 1

q½ ‡ r
< 1:
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We have now shown that ­ 0 in equation (23) satis®es 0 < ­ 0 < 1. This establishes
the result (19). The Fibonacci approximants to the quasiperiodic stacking sequence
are therefore given by equation (18). &

A curious companion to equation (19) is

mp

q
ˆ ‰m½ Š; m ˆ q ‡ 1; . . . ; p: …24†

We de®ne ­ and ­ 0 as before. For m ˆ q ‡ 1; . . . ; p, we can write

mp

q
ˆ …q ‡ k†p

q
ˆ p ‡

kp

q
; k ˆ 1; . . . ; r:

Since ­ is the fractional part of kp=q, it satis®es equation (22). The rest of the proof is
identical with the proof that we have given for equation (19), but with k in place of
m.

Since ½ 1 ˆ ½ 1, equation (16) can be written in the alternative form

n ˆ m ‡ m

½
: …25†

When written in this form, it is seen to be a particular case of a general formula of
Socolar and Steinhardt (1986) for 1D `tilings’ obtainable by the `strip projection’
method from a two-dimensional (2D) lattice. With some change in notation to
correspond to the notation of the present work, this formula is

x ˆ »m ‡ ¬ ‡ ‰m¼ ‡ ®Š: …26†
It speci®es a set of points on the number line. The variable m is an integer; the other
parameters are ®xed and may independently be rational or irrational. Changing the
parameter ¬ corresponds only to a translation of the pattern or, equivalently, to a
change of origin. Changing the parameter ® produces `phason ¯ips’ which, for
periodic patterns, have the eŒect of a translation; the aperiodic patterns have the
property that, given two patterns with the same » and ¼ but diŒerent ®, any arbi-
trarily long portion of one of them occurs in the other. We shall, accordingly, set

¬ ˆ ® ˆ 0. The intervals between two successive values of x are the `tiles’, which are
of two lengths (L and S, say). The sequence of L and S values is determined only by

¼ and is periodic or quasiperiodic according to whether ¼ is rational or irrational
respectively. The ratio of interval lengths is given by

L : S ˆ …» ‡ ‰¼Š ‡ 1† : …» ‡ ‰¼Š†: …27†
The lengths are commensurate or incommensurate according to whether » is rational
or irrational respectively.

The `standard’ 1D quasicrystal (produced by projection of a 2D square lattice on
to two orthogonal 1D subspaces) is given by x ˆ m ‡ ½ 1‰m½ 1Š (Levine and
Steinhardt 1986), or, with a scaling factor,

x ˆ m½ ‡ m

½
: …28†

Observe that this gives a quasiperiodic pattern with incommensurate intervals
(» ˆ ½; ¼ ˆ ½ 1 and hence L=S ˆ ½), whereas for the quasiperiodic stacking sequence
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given by equation (25) we obtain the same pattern, but with commensurate intervals
…» ˆ 1; ¼ ˆ ½ 1 and hence L=S ˆ 2). Equivalently, » ˆ 0, ¼ ˆ ½ and L=S ˆ 2.

The values L=S ˆ 2 for spacing of the (111) planes occupied by transition-
metal atoms is of course a consequence of the assumption that the underlying B2
structure is undeformed. In actual ½ phases this may not be so. It would be
intuitively reasonable to expect a deviation of the actual structures away from
this simple geometrical model; the minimum-energy con®guration would cor-
respond to a shift of atoms from their ideal positions. (The stacking sequences
would be unaŒected.) The atomic positions determined by Bradley and Taylor
(1937) for the t3 phase Al3Ni2 give L=S 2:3 (corresponding to a shift towards
each other of adjacent pairs of ®lled nickel planes). Ramachandrarao and
Laridjani (1974) investigated Al3Cu2. The observed diŒraction patterns agreed
very closely with those calculated on the hypothesis that the atomic positions
are the same as those given by Bradley and Taylor (1937). Since the deviations
of the positions of atoms from their positions in the simpli®ed model are pro-
duced by purely local dynamics, the L=S ratio would not be expected to vary
greatly in the diŒerent t phases of a family but may depend on the particular
transition metal. Clearly, more experimental data are needed for further elucida-
tion of the detailed structures of these phases.

} 7. Iterative generation of the Fibonacci sequences
As is well known, the standard Fibonacci quasiperiodic sequence F0F1F2 . . . can

be generated by the iterative rule 0 ! 1, 1 ! 10. (Binary sequences generated by
formulae of the type given by equation (26), and the iterative rules that generate
them, were studied by de Bruijn (1981), before the discovery of quasicrystals.) In
other words, applying the iterative rule (rule 1)

SN‡1 ˆ SNSN 1

for generating strings of binary digits, to the starting values S0 ˆ 0, S1 ˆ 1, gives

SN ˆ F1F2 . . . Fp: …29†
This is a consequence of a remarkable `quasiperiodicity’ property of the sequence
de®ned by equation (17); for any two consecutive Fibonacci numbers q and p,
p > 1,

Fn ˆ Fn‡p; n ˆ 1; . . . ; q: …30†
Proof: Equation (23) can be written as […m ‡ q†p=qŠ ˆ ‰…m ‡ q†½ Š, m ˆ 1; . . . ; r.
Therefore, for m ˆ 1; . . . ; r; ‰…m ‡ q†½ Š ˆ ‰…m ‡ q†p=qŠ ˆ ‰mp=qŠ ‡ p ˆ ‰m½ Š ‡ p.
From this result, and the de®nition (17) we deduce that, for n ˆ 1; . . . ; q; Fn ˆ 1 if
and only if Fn‡p ˆ 1. &

Alternatively, the iterative rule (rule 2)

SN‡1 ˆ SN 1SN

gives

SN ˆ F p . . . F 1: …31†
At each stage of the iteration, one can arbitrarily apply either rule 1 or rule 2. In

this way, an in®nite number of iterative procedures can be de®ned. All these iterative
procedures give rise to the same sequence. The various strings of length q obtained
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after N iterations, from the various iterative procedures, diŒer only by a cyclic
permutation. In®nite sequences obtained in the limit therefore diŒer only by a
translation.

The alternating rule (rule 3)

apply rule 1 or rule 2 according to whether N is even or odd;

generates the sequences {p=q}:

SN ˆ N0 . . . Np 1 ˆ fp=qg …32†

The sequences in the abridged notation of van Sande et al. (1978), in which 2 and 3
denote the subunits 10 and 110, can be generated from the starting values S0 ˆ 2,
S1 ˆ 3, by applying the following rule (rule 4):

apply rule 1 or rule 2 according to whether N is odd or even:

Thus,

f2=1g ˆ 2; f3=2g ˆ 3; f5=3g ˆ 32; f8=5g ˆ 3 32;

f13=8g ˆ 332 32; f21=13g ˆ 332 33232; . . . :

The iterative procedures can of course also be applied to S0 ˆ S, S1 ˆ L,
generating directly the sequence of `tiles’ or intervals.

} 8. Generation of non-Fibonacci sequences
The Fibonacci family of sequences fp=qg with q and p being successive terms in

the Fibonacci sequence, accounts for the stacking order of many of the t phases.
However, as discussed in } 5, quite a few t phases have been observed that do not
belong to this family. Their observed sequences, however, are all characterized by
having no subunits 111 or 00 and hence can be denoted in the abridged `32’ notation
of van Sande et al. (1978). Exploration of the actual sequences {p=q} generated by
equations (5) and (6) reveals that all known t phases are of this type, with
3=2 4 p=q 4 2. The following list gives all allowed non-Fibonacci {p=q} sequences
up to p ˆ 29:

f7=4g ˆ …32†2; f9=5g ˆ …32†22; f11=6g ˆ …32†23; f11=7g ˆ 3…332†;
f12=7g ˆ …32†22; f13=7g ˆ …324†2; f14=9g ˆ 32…332†; f15=8g ˆ …32†25;

f16=9g ˆ …32†2…32†22; f17=9g ˆ …32†26;

f17=10g ˆ …32†32; f17=11g ˆ 33…332†; f18=11† ˆ 332…32†2; f19=10g ˆ …32†27;

f19=11g ˆ …32†22…32†2; f19=12g ˆ 3…332†2; f20=11g ˆ …32†22…32†23;

f20=13g ˆ 34…332†;
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f21=11g ˆ …32†28; f21=13g ˆ …332†232; f22=13g ˆ …32†42; f23=12g ˆ …32†29;

f23=13g ˆ …32†2…32†2…32†22; f23=14g ˆ 332…32†3; f23=15g ˆ 36…32†;

f24=13g ˆ …32†23…32†24;

f25=13g ˆ …32†210; f25=14g ˆ …32†22…32†2…32†22; f25=16g ˆ 32…332†3…332†;

f26=15g ˆ …32†2…32†2…32†2; f26=17g ˆ 36…332†; f27=14g ˆ …32†211;

f27=16g ˆ …32†52; f27=17g ˆ 3…332†3
; f28=15g ˆ …32†24…32†25;

f28=17g ˆ …332†…32†4; f29=15g ˆ …32†212; f29=16g ˆ ……322†2†32;

f29=17g ˆ …32†32…32†22; f29=18g ˆ …332†332; f29=19g ˆ 37…332†:
It turns out that families of {p=q} sequences exist, generated by the iterative

procedures (rule 3 or 4) of } 7. For example taking S0 ˆ f8=5g and S1 ˆ f5=3g
and denoting these strings by the symbols 8 and 5, and applying rule 3, we
obtain, successively, f8=5g ˆ 8, f5=3g ˆ 5, f13=8g ˆ 85, f18=11g ˆ 855,
f31=19g ˆ 85 855, f49=30g ˆ 85855 855; . . .. The ®rst ®ve members have all been
observed as stacking sequences of t phases. The non-Fibonacci t31 was reported
by Amelinckx et al. (1990) . Their t38 belongs to a family that begins

f5=3g ˆ 5; f33=20g ˆ 855; f38=23g ˆ 856; f71=43g ˆ 856855; . . . :

Frangis et al. (1989, 1990) have extensively investigated alloys that have struc-
tures analogous to those of the t phases. They are, like the t phases, modulated B2
structures, with characteristic stacking sequences along a [111] axis, but the binary
sequences are composed of two kinds of atom, rather than of atoms and vacancies.
The sequences have been observed to be built from units of length 5 and 7, of the
form 10101 and 1010101. Denoting f7=4g ˆ 332 by 7 and f5=3g ˆ 32 by 5 and
applying rule 4, we obtain the family f7=4g ˆ 7, f5=3g ˆ 5, f12=7g ˆ 57,
f17=10g ˆ 557, f29=17g ˆ 557 57, f46=27g ˆ 557 55757; . . . : These stacking
sequences are (apart from irrelevant cyclic permutations corresponding to transla-
tion of the in®nite periodic sequences) precisely those observed by Frangis et al.!

It should be remarked that these remarkable families of {p=q} sequences (and
many others) have been found empirically by examining the sequences belonging to
the ®rst few members of these families. We have no mathematical proof that the
iterations would continue to yield {p=q} sequences; that is a conjecture.

} 9. Concluding remarks
The predominance of the irrational number ½ in the metric properties of

quasicrystals exhibiting ®vefold or tenfold symmetry is not a mystery; the struc-
tures are built in various ways from clusters with icosahedral symmetry; the
irrational number ½ is the length of the diagonal of a regular pentagon of unit
edge length, and the circumradius of a regular decagon of unit edge length. The
occurrence, in the structure of the `approximants’ associated with these quasi-
crystals of the rational fractions p=q, where p and q are consecutive terms in the
Fibonacci sequence 1 1 2 3 5 8 . . . comes from the fact that the limit of these
fractions is ½ .
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The reason for the occurrence of the Fibonacci numbers in the t phases is not
clear. (It is a surprising coincidence that Lu and Chang called them the `t phases’
before this was recognized.) As we have shown, the Fibonacci-type t phases can
arise as approximants to a 1D trigonal quasicrystal produced by growth along a
‰11½½ ] direction of the underlying cubic lattice. Perhaps this is a clue, but it is not
apparent why this particular direction should be favoured. It is perhaps not
entirely irrelevant to note another quite diŒerent context in which Fibonacci
numbers occur in nature: in the arrangements of leaf buds and ¯orets in many
plant species. A completely satisfactory explanation has proved elusive, although
there has been much theoretical speculation (it is essentially a problem of optimal
close packing of similar units). It seems unlikely, but not inconceivable, that the
two problems are related.

The standard `1D quasicrystal’ (known to date only as a substructure of 2D and
3D patterns with ®vefold symmetries) is characterized by an `L=S ratio’ equal to ½ .
In the vacancy-ordered phases discussed here, ®vefold symmetry is not present.
However, it is interesting to note that approximations to pentagonal and icosahedral
structures in the B2 structure have been pointed out by Dong (1995, 1996) and Dong
et al. (1999) who have explored reasons for regarding B2 structures as `approxi-
mants’ to quasicrystals. Zhang and Kuo (1989) have observed that the ½ phases
can occur in conjunction with decagonal quasicrystalline phases, with a surprising
(and mysterious) orientation relation between the two phases: the tenfold axis and
two perpendicular diads of the decagonal phase are aligned with [110], [001] and
[1110Š of the underlying B2 structure of the t phase.

The simple systematic iterative generation of the stacking sequences, and the
alternating sequence of ®lled and empty lamellae parallel to the (rrqq) planes, are
probably also clues to the nature of the dynamic processes that produce the vacancy-
ordering characteristic of the t phases.
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