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An algorithm for generating quasiperiodic patterns and  
their approximants† 
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Abstract. An algorithm for projecting the interior of a hypercube in N-dimensions on to an m-dimensional 
subspace has been developed and incorporated into a computer program for generating quasiperiodic and  
periodic patterns in an n-dimensional subspace. Some aspects of the resulting orthorhombic approximants to 
Penrose tiling patterns are discussed and illustrated. 
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1. Introduction 
 
Since the discovery of quasicrystals (Schechtman et al  
1984; Levine and Steinhardt 1984) very many figures 
have appeared in the literature illustrating quasiperiodic 
tilings of the plane and their periodic approximants. An 
elegant general method for generating quasiperiodic tiling 
patterns consisting of a finite number of types of rhombic 
(in higher dimensions, generalized rhombohedral) tiles is 
the projection method (Kramer and Neri 1984; Conway 
and Knowles 1986). The details of the algorithms that we 
have used to obtain these patterns are rarely discussed in 
the literature. A presentation of a general algorithm for 
projecting a strip of an N-dimensional hypercubic lattice 
on to an n-dimensional subspace has been described by 
Vogg and Ryder (1996). 
 A tiling of the plane by rhombuses, that has long- 
range orientational order exhibiting N-fold symmetry, is  
obtained by projecting a ‘strip’ of a hypercubic lattice (in 
N dimensions if N is odd or in N/2 dimensions if N is 
even) on to a plane perpendicular to the [11 . . . 1] axis. 
The two-dimensional (square) facets of the hypercubes 
project to rhombic tiles in the plane (figure 1). The cases 
N = 5, 8 and 12 are of particular interest because of their 
relevance to the structural modeling of decagonal, octa-
gonal and dodecagonal quasicrystalline alloys. As is well-
known, the tilings of three-dimensional space by two 
kinds of rhombic hexahedral tiles arises from the N = 6, 
n = 3 case, and are related to the structure of icosahedral 
phases (Katz and Duneau 1986). The interesting case of 
N = 8, n = 4 has been discussed by Sadoc and Mosseri 
(1988). (The lattice in 8-dimensional space in this case is 
a sublattice of the hypercubic lattice, viz. the E8 lattice—
see, for example, Conway and Sloane 1988). 

2. Projection of a hypercubic lattice 

The 2N vertices of a unit hypercube in EN, centred at the 
origin, are given by the position vectors 
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1

Nrrr ±±± , (1)  

where the vectors ri (i = 1, . . . N) are the columns of an 
orthogonal matrix R: 

RRT = I. (2) 

The matrix R can be split into an n × N matrix A and an 
m × N matrix B (m = N – n): 
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The columns ai (i = 1, . . . N) of A span an n-dimensional 
subspace E|| and the columns bi (i = 1, . . . N) of B span an 
m-dimensional subspace E⊥. These two spaces are ortho-
gonal to each other. The images of the vertices of the  
hypercube, under orthogonal projection on to E⊥, are 
given by 

 .)...( 212
1

Nbbb ±±±  (4) 

The interior of the hypercube projects to a region W in E⊥ 
bounded by (m – 1)-dimensional rhombohedra (the images 
of (m – 1)-dimensional facets of the N-dimensional hyper-
cube). The projection method for producing a tiling of E|| 
can be described briefly as follows: project on to E⊥ the 
points of the hypercubic lattice defined as the set of all 
points with position vectors of the form 

,)...( 22112
1 arrr ++++ NNxxx  (5) 
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with integer coefficients xi (i = 1, . . . N). (a is a fixed vec-
tor, corresponding to a translational shift of the lattice 
relative to the origin). The images are the points of E⊥ 
with position vectors of the form 

,)...( 22112
1 ybbbx ++++= NNxxx  (6) 

(y is a fixed vector in E⊥, the projected image of a). The 
region W (the ‘window’ region) provides a selection rule: 
Only those lattice points that project to points inside W 
are orthogonally projected to E||. The resulting set of 
points in E|| are, in general, the vertices of a tiling pattern 
in E||, the tiles being projected images of n-dimensional 
hypercubes. (We say ‘in general’ in order to avoid having 
to discuss singular cases.) 
 The method outlined above is, of course, very well 
known. Clearly, the central problem to be solved in pro-
ducing a practical algorithm for computing the patterns in 
En (= E||) is that of determining the window region W. 

3. Properties of the hypercube 

A hypercube in EN has 2N–j   j-dimensional ‘facets’ (i.e. 
it contains 2N–j   j-dimensional hypercubes). They occur 
in    sets of 2N–j parallel facets. For example, in E3 a  
cube has 3 sets of 4 parallel edges and 3 pairs of parallel 
faces; in E4 a hypercube has 4 sets of 8 parallel edges, 6 
sets of 4 parallel plane faces and 4 pairs of parallel cubic 
cells. When EN is projected on to an m-dimensional sub-
space E⊥, a hypercube centred at the origin projects to a 
region bounded by     pairs of parallel hyperplanes. The 

central problem to be solved is therefore to identify the two 
hyperplanes, out of each set of 2N–m + 1 parallel hyperplanes, 
that are furthest from the origin of E⊥. 

4. Algorithm to obtain W as a set of inequalities 

We shall indicate the approach adopted in our algorithm 
by an illustrative example: the simple case of N = 3, 
n = 1, m = 2 (a cube in E3 projected on to a plane). The 
region W is, in general, a hexagon with pairs of opposite 
edges equal and parallel).  
 In figure 2 the projected vertices of the cube are labeled 
by sets of integers, which indicate the number of minus 
signs in the expression (4) for the position vector of a 
vertex. We compute the equations of the four parallel 
lines 

0 1, 2 12, 3 13, 23 123. 

Any line that does not pass through the origin has an 
equation of the form 

x⋅⋅q = 1, (7) 

and its distance from the origin is 

d = 1/|q|. (8) 

The coordinates of the points marked 0 and 1 in figure 2 
have position vectors 

v1 = b1 + b2 + b3, 

  v2 = – b1 + b2 + b3, (9) 
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Figure 1. The N = 7, n = 2 case with y = 0. Quasiperiodic 
tiling by three types of rhombuses. 
 

Figure 2. General projection of a cube on to a plane. 
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 (for convenience we drop the factor 1/2 from (4)—the 
cube is taken to be a cube of edge length 2). Hence the 
line 0 1 is given by (7) with q satisfying  

v1⋅q = v2⋅q = 1. (10) 

(If there is no solution this means that the line passes 
through the origin and so, obviously, cannot be part of the 
boundary of W.) Next, we consider the line 2 12 parallel 
to the previous one. Its two vertices are 

v3 = b1 – b2 + b3, 

  v4 = – b1 – b2 + b3. (11) 

 
If a q is known for the previous line, there is no need to 
solve the equations, because we know that the vectors q 
for parallel lines differ only by a scalar factor. Hence, we 
can take the previous q and compute k = v3⋅q. If k > 1  
this means that the line currently under consideration is 
further from the origin than the previous line, so we  
can simply replace: q → q/k. Otherwise, q remains un-
changed. Proceeding in this way, we find the vectors  ± q 
for the two lines from the set of four parallel lines that are 
furthest from the origin and therefore form part of the 
boundary of W. 
 We proceed similarly for the other quartets of parallel 
lines 

0 2,  1 21,  3 23,  13 123 and 0 3,  1 13,  2 23,  12 123. 

We then have three vectors q1, q2 and q3 which define the 
hexagonal region W as a set of inequalities 

.)( 2
1

2
1 <+⋅<− yxq  (12) 

 In higher dimensions the analogue of (10) is a set of m 
linear equations in m unknowns qi (i = 1, . . . m); in  
matrix notation, 

Vq = j, (13) 

where q is m × 1, V is m × m and j is a column of m 1s. In 
our implementation of the algorithm we employed an  
iterative algorithm (Lord et al 1990) for solving these 
equations. 

5. Orthorhombic approximants of Penrose tiling  
patterns 

The standard rotation matrix for producing quasiperiodic 
tilings of the plane by Penrose rhombs from a hypercubic 
lattice in E5 is 

 (14) 

where τ = (1 + √5)/2, σ = (1 – √5)/2 and β = √(3 – τ). 
 Since linear deformations of the space E⊥ will not  
affect the pattern produced in E||, it is legitimate to elimi-
nate any overall factor in any row of B, so for simplicity 
we may take 
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A periodic pattern consisting of the same pair of rhombic 
tiles as those of the quasiperiodic patterns is obtained if 
the elements of the matrix B are replaced by rational 
numbers. It is well known that periodic approximants of 
icosahedral and decagonal quasicrystals correspond to the 
replacement of the golden number τ by p/q, where q and p 
are successive terms in the Fibonacci sequence 

1 1 2 3 5 8 13 . . . . 

The periods in the pattern produced in E|| arise because, 
with rational numbers as components of the vectors bi 
(i = 1, . . . 5), we will get identities of the form 

x1b1 + x2b2 + . . . + x5b5 = 0, (16) 

with integer coefficients xi (i = 1, . . . 5). Whenever this 
occurs, the vector 

x1a1 + x2a2 + . . . + x5a5,  (17) 

will be a period for the pattern in E||. 
 An ambiguity arises because 

σ = – τ–1 = 1 – τ, (18) 

so that a reasonable approximant for σ could be either  
– q/p or 1 –  p/q. We thus have two possible schemes. In 
addition, we can use two different Fibonacci approxi-
mants for τ, replacing τ by p1/q1 in the first row of B and 
by p2/q2 in the second row. We may call the resulting pat-
tern a p1/q1, p2/q2 approximant. 
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 Scheme II: ,
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For scheme I the periods are  
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2
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For the Fibonacci approximants we set 

.,,, 122111 2211 −− ==== nnnn FqFpFqFp  

The identities 
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then lead to the following expressions for the periods: 
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We thus get orthorhombic unit cell with 
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For scheme II the periods are 

),(55 52111 aaa ++ qp  

),()( 522432 aaaa −+− pq  

giving, for the Fibonacci approximants, periods 
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In both schemes the resulting periodic tiling pattern is 
orthorhombic, with periods along the two orthogonal  
directions a1 and a3 – a4 (figure 3). It is easily verified 
that, in scheme I, the sum of the two periods can be divi-
ded by 2 to give another period if and only if p1 + q2 and  
p2 + q1 are both even. The orthorhombic unit cell is cen-
tred in these cases. In scheme II we get centred ortho-
rhombic cells if and only if p2 is even and p1, q1, q2 are 
odd. Figures 4–6 illustrate 1/1, 1/1 and 2/1, 2/1 in scheme 
I and 1/1, 2/1 in scheme II. 
 Approximants can also be produced that have periods 
along a1 and a2 or along a1 and a3. A method for obtain-
ing the appropriate matrices B for these and other cases 
was given by Ishii (1991). For example, taking 

 

Figure 4. A 1/1, 1/1 approximant, in scheme I. The ortho-
rhombic unit cell is centred. 
 

Figure 3. A periodic tiling by Penrose rhombs: a 2/1, 5/3 
approximant in scheme I, with a rectangular unit cell indicated. 
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we find periods 5τn –1a1 and 5τn –1a1, suggesting a primi-
tive unit cell in the shape of a Penrose tile. However, a 

shorter period τn –1(a1 – a2) exists in all these cases. This 
is readily apparent in figure 7, which illustrates the simple 
case of n = 2: p = q = 1. 
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Figure 5. A 2/1, 2/1 approximant, in scheme I. The ortho-
rhombic unit cell is centred. 
 

Figure 6. A 1/1, 2/1 approximant, in scheme II. The ortho-
rhombic unit cell is centred. 
 

Figure 7. An approximant with equal periods along e1 and e2. 
Observe the small period e3 – e5, one fifth of the diagonal of the 
rhombic cell. 


