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1. Introduction

In 1954, Yang and Mills introduced a new idea into theoretical
physics, which later came to dominate the physicist’s view of the
fundamental structure of the physical forces of nature. The Yang-
Mills theory is the ‘gauge theory of a non-Abelian symmetry group’,
and is essentially a generalization of Maxwell’s theory of electromag-
netism, which is the gauge theory of a one-parameter Abelian group.

The theory of Yang and Mills dealt specifically with the isospin
symmetry of nuclear forces. The gauging of the isospin group SU(2)
leads to a triplet of isospin-1 mesons as analogues of the photon;
the non-Abelian nature of the group gives rise to nonlinearity of
their field equations. The eminently successful Salam-Weinberg uni-
fication of the weak and electromagnetic forces (1973) exploited the
Yang-Mills ideas. The observed distinction between the weak forces
and the electromagnetic forces, including the masses of the Wy and
the Z, come from a spontaneous symmetry breaking mechanism
(Higgs mechanism). Quantum chromodynamics (QCD) is, similarly,
a gauge theory for the strong interactions, in which the Yang-Mills
particles are the ‘gluons’ that mediate the forces between quarks.
Attempts to unify the electromagnetic, weak and strong forces by
further exploiting the Yang-Mills idea are the ‘grand unified theo-
ries’ (GUTs). The hope is to find a group that contains the Salam-
Weinberg group and the unitary symmetry group of QCD in a non-
trivial way, to gauge the group, and to introduce appropriate-Higgs
mechanisms to break the symmetry so as to obtain the observed
behaviour of the three kinds of fundamental interaction.

In all these developments, the gravitational forces are ‘conspicuous
by their absence’. From the outset, Einstein’s general relativity has
stood alone, isolated from the developments that have taken place
in our understanding of the other fundamental forces. This immense
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conceptual gap was the source of Einstein’s opposition to the de-
velopments that took place in physics as a result of the advent of
quantum theory, an opposition summarized in his famous statement
“God does not play dice.” At present the gap appears not quite
so unbridgeable (though the problem of the unification of all the
forces of nature, including gravitation, is still formidable). In fact,
Einstein’s gravitational theory and various modifications and exten-
sions of it, can be understood as ‘gauge theories’ in the Yang-Mills
sense. We shall not discuss the physics of these theories; our aim
here is only to throw some light on the geometrical concepts that
allow gravitational theories to be viewed as gauge theories. More
details will be found in the references.

2. Gauging a Non-Abelian Group
Let t be a set of physical fields of a Lagrangian theory invariant
under a group of linear transformations

b — S¥. (1)

When § is made space-time dependent, invariance is maintained by
replacing derivatives of 3 by a generalized derivative

Dip = 8¢ + T'ivp, (2)
where I'; is a linear combination of the generators G, of the group,
I = Ti°G,, (3)
provided the ‘gauge potentials’ I';* have the transformation law
T; - ST:S™! - (8;8)5~L. (4)
The ‘gauge fields’ F;;* are defined by
[Di, Dj] = Fyj = Fij*Ga = 8:T; — Ti + [T, Tj]. (5)
They transform homogeneously:
Fij = SF; S~ (6)

This is the basic Yang-Mills idea. We have a generalization of the
electromagnetic potential and the electromagnetic field. Under an
infinitesimal gauge transformation and an infinitesimal coordinate
transformation,

S§=I+¢, e=¢G,, zioz'-¢ (7)
we have

5 = E90;% + e, 8)
0T = £0;T: + (0:6%)T; ~ Die, Die = Bie +[Tire].  (9)
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Changing the parameters to X = £'T; — €, we have the following neat
‘manifestly invariant’ forms for the infinitesimal changes:

8 = €Dy — A, (10)
6T; = & F;i + DA (11)

3. Lie Groups

A Lie group G is a group whose elements constitute a differentiable
manifold. An element of G can be regarded as a transformation on
the manifold, or as a point of the manifold. We shall write ¢ to denote
an element of G when the former aspect is emphasized, and we shall
write z when we wish to emphasize the latter aspect. Associated
with any element g, there is a transformation on the manifold G,
called left translation:

z— Lgz = gz. (12)
Similarly, right translation is defined by

A left-invariant vector field on G is a vector field that is un-
changed by any left translation. A left-invariant field generates a
one-parameter group of right translations, and vice-versa. The com-
mutation of two left-invariant vector fields is a left-invariant vector
field. So the left-invariant vector fields form an algebra under com-
mutation, called the Lie algebra of G. A basis for the Lie algebra
is a set {R4} of left-invariant vector fields. It constitutes a vielbein
on the manifold G. [Vielbein: German for ‘many legs’, a generaliza-
tion of the terminology vierbein (‘four legs’) meaning ‘tetrad’.] We
write A, B, ... for the vielbein labels and M, N,... for coordinate-
based indices. Denote the elements of the matrix of components of
the ‘left-vielbein’ {R4} by R4™. The elements of the inverse matrix
can then be denoted by Ras4; they are the components of a set { R4}
of ‘one-forms’ (i.e., covariant as opposed to contravariant vectors),
constituting the basis ‘dual’ to {R4}. The structure constants of the
group (& are given by

[RA,RB] = CAI_-_':CRC. (14)

Let § be any matrix representation of the Lie group G; i.e., §(z)
is a matrix field on the manifold G satisfying 5(9)S(z) = $(92),

§(z7') = §7!(z). The matrix generators G 4 for the representation
§ are

Ga = SR 4(S). (15)
They can be shown to satisfy
[G4,G8] = C$pGo. (16)
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An ordinary one-form maps a vector to a scalar. A ‘Lie algebra-
valued’ one-form maps a vector to an element of the Lie algebra,
i.e., to a left-invariant vector field. The Maurer-Cartan form 8 is
the one-form that maps a vector X at a point z of G to the unique
left-invariant field that takes the value X at 2. In a representation
S, @ is represented by a matrix-valued one-form

0 =04G,4, (17

where the coefficients 64 are ordinary one-forms. Since 64G 4 maps
Rp to its representative matrix Gp, we have 04(Rp) = §4g, so
84 = RA. Therefore

8 = G4RA. (18)

Observe also that the matrix-valued one-form 5 -1 48 satisfies
(S~1dS)Rs = ST IRA(S) = Ga,

and hence

0=51dS (19)

in any representation S. If G is a matrix group, we can use the self
representation and write simply

8=2"1dz (20)
Then, from dz = z8 and d dz = 0 we get the Maurer-Cartan equation
dd+8éAn0=0. - (21)
In terms of components, this is
- OmRN* — OnRm* + RMPRNC Cgc? =0, (22)
which is equivalent to
R M8y Re" — RgMOmR4™N = Cag®Rc™. (23)

That is, the Maurer-Cartan equation and the commutation relations
(14) are equivalent.

4. Fiber Bundles

The theory of fiber bundles was developed by mathematicians as a
branch of pure mathematics. Exciting developments began in the
1960s with the realization that the mathematicians’ ‘fiber bundles’
and the physicists’ ‘gauge theories’ were essentially identical. The
mathematicians’ preoccupation with the global topological proper-
ties of the geometrical structures known as fiber bundles then pro-
vided physicists with methods and concepts that released the study
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of gauge theories from 1ts preoccupation with local concepts (formu-
lated in terms of differential equations).

A fiber bundle is constructed from a bundle space P and a Lie
group G, the structural group, which acts on P without fixed points.
The orbits of the action of G are the fibers, which are subspaces of
P. There is one fiber F, through each point z of P, The fibers are
required to be all homeomorphic to a fiber space F so that the action
of G on P corresponds to an action of G on F. The set of all fibers
is homeomorphic to a space M, the base space, and a projection
operator * maps P to M, each point > being mapped to z unique
point z = 7z € M so that all the points of a fiber are mapped to the
same point of M. A point 2 € M specifies a unique fiber F, = r—1z
in P.

With hindsight, one can see that the first use of a fiber bundle
in physics was in fact the Kaluza-Klein theory. The group G is the
electromagnetic gauge group, the bundle space is five-dimensional
and the fibers one-dimensional. The four-dimensional base-space is
space-time.

A principal fiber bundle P(M,G) is a fiber bundle for which the
fiber space F' is the manifold of the structural group G. We denote
the action of an element g of G on P, by the notation

z— zg = R,z (24)

An equivariant field ¥ on P is a field belonging to a linear represen-
tation $ of G with the transformation law

R ¥ = S(g)¥. (25)
This can be written as
¥(297") = S(9)¥(2) (26)

so that an equivariant field can be seen to be determined on the
whole of a fiber F, if its value at any point z of the fiber is given.
Consider the tangent space to P, at a point z. The tangent space
to the fiber F,, at z, is a subspace. One can choose a space H, so
that any vector z can be resolved into a component in F, (called the
‘vertical’ component) and a component in H, (called the ‘horizontal’
component ):
X=X,4+X, (27)

(see Fig. 1). If a ‘horizontal space’ H, is chosen at every point of
P in such a way that the whole set of horizontal spaces is invariant
under the action of G, then the set of horizontal spaces is called an
‘Ehresmann connection’ on the principal fiber bundle.
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Given a vector Y at a point z of the base space M, one can define a
unique vector Y at any point z of the fiber Fz, that is horizontal and
is mapped to Y by the projection . This is the ‘horizontal lift’ of ¥’
at z. Moreover, a curve in M can be ‘lifted’ to give ‘horizontal’ curves
in P, and one can then proceed to introduce the idea of a ‘parallel
transport’ of a fiber, or of an equivariant field, along a curve in M.
Clearly, a horizontal lift of a closed curve in M is not, in general,
- a closed curve in P (Fig. 2) and the concept of a connection in the
Fhresmann sense leads to a corresponding concept of ‘curvature’.

=\

Fig. 2

An alternative definition of connection, equivalent to the Ehres-
mann definition, is as follows. A connection on a principal fiber
bundle P(M,G) is a Lie algebra-valued one-form w that is equivari-
ant,

R*w = gwg™" (28)
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and that maps any vertical vector at a point z to the corresponding
left-invariant field on F

w(X,) = 6(X,). (29)

Given such an w, Ehresmann’s horizontal spaces can be constructed
from those vectors X, that satisfy w(X},) = 0. The curvature asso-
ciated with a connection w is defined to be the Lie algebra-valued

two-form
0 =2dw+wA w). (30)

A section on a fiber bundle is a mapping o: M — P satisfying
om = 1. That is, o associates with each point z on M a unique
point o(z) in the fiber F, (Fig. 3). One can then define ‘pull-backs’
of fields on P:

Y=0'¥, T=0w, F=0%0 (31)

are fields on M. Under the action of ¢ on P, they transform accord-
ing to Eq. (1), Eq. (4) and Eq. (6). Hence the theory of a principal
fiber bundle provides a geometrical realization of a gauge theory.

Fig. 3

A gauge transformation .can be interpreted actively, as a mapping
on the bundle space,.or passively, as a change of section. The section
has no physical content, it is simply a part of the reference system,
enabling equivariant fields on P to be described in terms of fields
on space-time M all sections are equivalent so far as the physics is
concerned.
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The gauge transformations do not affect the points of space-time:
the fibers are acted upon but not moved by an active gauge trans-
formation. So the fiber bundle theory we have described is of use
only for the gauge theory of an internal symmetry group.

Now, as was shown by Kibble for the Poincaré group, the Yang-
Mills idea of gauging a symmetry group can be applied also to space-
time groups, as well as to internal symmetries. Indeed, in the case
of the Poincaré group, the Yang-Mills trick led to a theory similar to
Einstein theory, but with non-vanishing torsion (the ECKS theory).
To incorporate this kind of extension of the Yang-Mills idea into
fiber bundle language, one needs to consider transformations on a
bundle space that shift the fibers around. A very elegant way of
doing this was introduced by Ne'eman and Regge. The base space
in their apptoach is a coset space. The version of coset bundle theory
that we describe below was developed by Lord and Goswami.

5. Coset Bundles

Let G be a Lie group and H a Lie subgroup. Let H act on G by
right translation:
z — Ryz = zh. (32)

We then have a principal fiber bundle G(G/H, H). The bundle space
is the manifold G. The structural group is H (acting on the right)
and the fibers are the cosets 2H. The base space is the coset space
G/H, which will be interpreted as space-time. G may contain inter-
nal symmetries as well as space-time symmetry (such as the Poincaré
group, the de Sitter group or the conformal group).

Consider the left action of the whole of G on the coset bundle:

z— Lyz =gz (33)
The points of the base space are not invariant under this action.

Writing z = 7z, the effect on the base space is

z -z’ =rgrlz. (34)

If a section o is introduced, the action can be conceived as consisting

of a ‘space-time dependent’ action of the structural group H, and an
action [Eq. (34)] on space-time:

go(z) = o(z')h(z,9)- (35)

We now define gauge transformations to be the most general

transformations on the space G(G/H, H) that preserve the fiber bun-

dle structure. That is, a gauge transformation z — f(2) is a mapping
that commutes with the right action of the structural group H:

f(2)h = f(zh). (36)
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Fig. 4

Defining g(z} = f(2)z~!, we find 9(zh) = ¢(2), so that g(z) is con-
stant over each fiber, and so we can write 9(z) = g(z). Then

f(2) = g(z)z. (37)

Thus, a gauge transformation, as we have defined it, is like a left-
translation, except that the group element g is space-time dependent.
A generalized connection w on the coset bundle is defined to be

a Lie algebra-valued one-form, by which we mean the Lie algebra of
G, not just of the structural group H. Moreover, we require w to
satisfy

1. R w = hwh™! (equivariance);

2. w(X)=0if and only if X = 0 (nonsingular);

3. w(Xy) = 8(X,) for any vertical vector.
The generalized curvature associated with w is defined to be

0 = 2(dw + w A w). (38)

Let the coordinates of a point z of G be denoted by M, Adapt the
coordinate system to the structure of the bundle by writing zM =
(z',x™) where z* are coordinates on the base-space G/H and y™
are coordinates on the fiber X Corresponding to this splitting M =
(¢,m) of the coordinate-based indices, we can introduce a splitting
A = (a,a) of the vielbein indices, where a labels vertical vectors of
the vielbein and « labels the rest. We can choose the left vielbein
(R4) s0 that the (R,) are vertical. Then R,* = 0 and hence R,,* =
0. The third condition on w then means that the components E,,4
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of w have the form
Es B
EMA = ( 0 Rm\a) (39)

The equivariance of w then implies that the only nonvanishing com-
ponents @prn4 of the curvature are 0,;4.
Let o be a section. The components of ¢(z) have the form

oM(z) = (z',0™(z)). {40}
Employing o to ‘pull back’ equivariant fields, we define
Y =0o"¥ = ¥(g). (41)

I' = o*w. That is,
L4 = oM Ept(a),

or, more explicitly, I;* = E;%(0) = ¢;%, (42)
I = E;%(0) 4+ 6™ ;Rm*(0).

F = 0*0. That is,

Fyt = oM 0N ;0mn"(0) = 0;4(0). (43)
We find that
Fij = 0T — 03T + [T, Ty, (44)
i.e.,
F,'J'A = B,-I‘_,-A - 3,-1‘,-“ + P.’BI‘jCCBCA. (45)

We can compute the action of an infinitesimal gauge transforma-
tion zM — M _ AM on these space-time fields. The gauge trans-
formation is determined by the parameters

M(z) = " EAA = A(a). (46)
We find
59 = "A¥ = A4Q 49, (47)
where
QA‘QD = O"EA\I’ = O'*EAM\I’M.
But

Oy = aM,,-‘II_M(cr) =V (o) +07TY (o),

~and the infinitesimal form of the equivariance condition on ¥ is
¥ m = —Rpn®G,¥. Substituting these expressions, we get

Q4 = E4*(0)(0i¢0 + Ti%Gat)) — 64°Ga,

ie,

Qatp = eaiDid’y Dy =09 + Ti®G.%, and Qa¥ = ~Ga9.
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Defining ¢ = A%e,*, we obtain the transformation law
69 = £ Dy — MG,y (48)

6Tf = oM ;8 EpsA(0). Now Epg4 is a covariant vector on the mani-
fold G, so

SEMA = ANONEMA + (OAM)ENA
= A + AN(ONEp? - By En?).
But
Oun* = O EN — ONEp™ + EmPEN©Cpc?,
so (using the vielbein components Ep# for converting indices),
SEm™* = 0mA* + AB(Cup” — Oppt).
Therefore,
6% = oM (04 + ABEyC(0)Cop™ — ABESN (0)0mn*(0))
= (82 + ABI,CCcp?) - ¢ F;A.
We obtain the transformation law of the potentials in the form
T4 = £ F;* + DidA,
DA = 8ix4 — AP, CCpeA. } 49)

 The fiber bundle theory has provided us with the appropriate gen-
eralizations of the transformation laws given by Eq. (1) and Eq. (4),
for the case where G contains a space-time symmetry.

6. Poincaré Gauge Theory

Finally, we shall illustrate the transformation laws we have found,
by applying them to a particular example. Let G be the Poincaré
group. Denote the generators of Lorentz rotations by Gup (= ~Ga)
and translation generators by G,. H is the Lorentz group. G/H is
space-time. The commutation relations are:

[Gm Gﬁ] =0,
[Gass G,)= NayGp — N1 Gas (50)
([Gaps Gyl = NavG 85 — NgyGas + 1psGay — NasGpy
Writing
I; = e,°Gy + %ri‘*ﬁcw, (51)

. 1
F;j =0 = ;i + [T4, T} = Fis*Ga + 5 Fj* Gap,  (52) -
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we find

Fij'@ = 3,‘65‘6 — (9_7'6,"6 - e,-“’I‘j,,,ﬁ + Ej‘yl—"?,y, (53)

Fijo® = 0;T ;5" — 3;Tia® = Tia"TjyP + Ta7T4,7, (54)

(where 7,5 has been used as a raising-lowering operator). The trans-
lational components e;* of I'; define a tetrad, and we can construct
a metric and a set of connection coefficients on space-time:

gij = ei%e; nag, (55)
Tii* = (Bie;™ + ¢;°Tip™)ea™. (56)

Then the ‘translational gauge potentials’ Fi;* turn out to be the
torsion, and the ‘rotational gauge potentials’ F};i' turn out to be
the curvature, associated with these connection coefficients. The
connection coeflicients are metric-compatible, j.e.,

8igjx — Tij'gi — Tar'gje = 0. (57)
Writing
A= AGo + %AaﬁGaﬁ (58)
and defining the parameters
£ = el A, P =P NeB (59)
we find that the transformation laws [Eq. (48) and Eq. (49)] are
be;® = £19;e,% + (0:87 )e;* + €iP¢p®, (60)
8T:0” = E0;T:0” + (88T jo” — Diea”,
Diea® = diea® —Tia"e,” + €Ty, } (©1
5 = E0,9 + 3¢ G (62

These are identical to the transformation laws for a tetrad, a set of
‘spin coefficients’ and a field representing the Lorentz group, under
the combined action of a Lorentz rotation of the tetrad and a general
coordinate transformation.

To justify the assertion that these are indeed the transformation
laws appropriate to a gauged Poincaré group, we impose the restric-

tions
e® =6, Ti"=0, (63)

and consider just those transformations [Eqs. (60)-(61)] that main-
tain these restrictions. We have Fj; = 0 and D; = &;, and so

0 = 0:&; + €ij, }

4
0= 3;63'];. (6 )
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Hence ¢, is constent, and
Ei=a; + Ej;&t‘; (65)

just the effect of an infinitesimal action of the Poincaré group on
Minkowski space-time. The field ¢ transforms according to

b = al B9 + %e‘-"(:riaj —z;0; + Gij)v, (66)

as it should. In terms of the bundle space, we have the left action of
the Poincaré group on itself.
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