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Abstract. A bricfreview is given of the linear fractional subgroups of the Mathieu groups. The
main part of the paper then deals with the projective interpretation of the Golay codes; these codes
are shown to describe Coxeter's configuration in PG(3,3) and Todd's configuration in PG(11,2)
when interpreted projectively. We obtain two twelve-dimensional representations of M, 4. One
is obtained as the collineation group that permutes the twelve special points in PG(11,2); the
other arises by interpreting geometrically the automorphism group of the binary Golay code.
Both representations are reducible to eleven-dimensional representations of M,,.
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1. Introduction

We shall first review some of the known properties of the Mathicu groups and their
linear fractional subgroups. This is mainly a brief resumé of the first two of Conway’s
“Three Lectures on Exceptional Groups’ [3] and will serve to establish the notation and
underlying concepts of the subscquent sections.

The six points of the projective line PL(5) can be labelled by the marks of GF(5)
together with a sixth symbol oo defined to be the inverse of 0. The symbol set is Q
= {01234 c0}. The group L,(5) of homographies on the line is generated by the
modulo 5 transformations on €

owi—i+1, fi-—i, yi-o—1/i (1.1)
As permutations,
a=(01234)
B=(14)23) (12
y=(000)(14).
The group S, of all permutations of the six symbols is generated by « and 7, where
t=(000). (1.3)

(As amodulo 5 transformation, 7: i — 1/i%). Alternatively, the S is generated by « and =,
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where

= (000)(14)(23) (1.4)
(m:i— — 1/i%). The mapping 6 on S defined by

=0 =x (1.5)

is an involutory outer automorphism of S. It is obviously not an inner automorphism
because the fifteen transpositions correspond, under 6, to the fifteen regular involutions
(products of three mutually commuting transpositions). These correspondences are the
same as the correspondences between Sylvester’s duads and synthemes of six symbols
[1], [2], [6]. Any transposition appears in the structure of three of the regular
involutions and each regular involution is comprised of three transpositions—a
Cremona~-Richmond 15;. The self-dual property of the 15; corresponds to the
involutory property of 6 (6% = 1).

The S¢ can alternatively be generated by the five transpositions (0 o), (1 00) (200)
(3 00), (40) or by the five regular involutions

mo = (00 0)(14)(23),
7, = (0 1)(20)(34),
7, = (002)(31)(40), (1.6)
73 = (0 3)(42)(01),
g = (00 4)(03)(12),

(obtained by acting on n with the powers of a).
Under the action of 0, the generators o, f, y of L,(5) are mapped to «, f, J, where

6 =(12)(34). (1.7)

Whereas the original L,(5), generated by «, 8,y is transitive on the six symbols, the L,(5)
generated by «, f, & acts on only five of them. Itis in fact the alternating group 4 of even
permutations of {0 123 4}. We have the isomorphism L,(5) ~ 4s. The action of , f, y
on the set Q induces the action of «, f, § on the set of five objects (1.6).

()" = Ty (“i)ﬁ = T, () = m (1.8)

(the notation here is n* = o~ 7q, etc).

The four permutations a, §, y and & together generate the group A4 of all even
permutations of six symbols. Indeed, this A¢ is generated by o, f, and § only, since
= (y9)>.

The S¢ together with its outer automorphism 6 generates a group S¢2 (a group with
an invariant subgroup S¢ of index 2).

The eight points of the projective line PL(7) can be labelled by the set Q
={C123456 co} consisting of the marks of GF(7) and the extra symbol co. The group
L,(7) of homographies on the line is generated by the modulo 7 transformations

wi—i+ 1, fi-2i, yio —1/i (1.9
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As permutations,

2=(0123456),
B =(124)(365),
7 =(000)(16)(23)(45). (1.10)

Analogously to the case of PL(3), there exists another L,(7) that acts on only seven of
the eight symbols; it is generated by «, § and

5 =(12)(36). (1.11)

The two groups L,(7) are mapped to each other by an involutory outer automorphism
of the group F generated by «,f,y and 6. In Figure 1, the vertices of Fano’s
configuration 7, have been labelled by the marks of GF(7) (observe that « cyclically
permutes the vertices of the ‘self-inscribed and circumscribed heptagon’ 0123456,
and that f rotates the figure and J reflects it). The projective plane PG(2,2)isa Fano 7,
and «, f and y generate its group of collineations—the simple group Li(2) of order 168.
We have the isomorphism L,(7) ~ L4(2).

The quadratic residues of GF(7) are the elements of the set Q ={0124}. The
complementary setis N = {356 co}. Consider the seven pairs of four symbols obtained
by operating with the powers of a on @, N:

P,={0124}{35600},
P, ={1235}{460 0},
P,={2346}{501 00},
P,={3450}{612 00}, (1.12)
P,={4561}{023 0},
Ps={5602}{134 0},
Ps={6013}{2450}.

The action of the L,(7) generated by o, B, 7, on €, induces the action of the L,(7)
generated o, §, § on this set of seven objects;

O“Pi—-)Piw ,B:Pi.—)Piﬂ’ ')):Pi—VPi(;. (113)
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The seven objects P; are the seven pairs of complementary tetrads of a Steiner system
S(3,4,8). (Conway employs the involution 7 = (00 0)(13)(26)(45) instead of our object 0,
N. The effect is the same. Our seven objects P; are more suitable for our later purposes).

The twelve points of PL(11) can be labelled by the symbol set Q
={0123456789 X co}. The first eleven of these symbols are the marks of GF (11).
The homography group L,(11) is generated by

awi=i+ 1, i-=3i, yi--—1/i (1.14)
(modulo 11), i.e. by the permutations

2=(0123456789X),
B=(13954)8267X), (1.15)
7= (0 00)(1X)(25)(37)(48)(69).

The set Q={013954} is the set of quadratic residues. The non-zero quadratic
residues are the powers of 3 modulo 11. The complementary setis N = {8267 X co}.
Observe that f leaves invariant these two hexads and y interchanges them.

The Mathieu group M , acting on the twelve symbols is generated by o, 8, 7, A, where

A= (2X)(34)(59)(67). (1.16)

As is well known, M, , is the automorphism group of the Steiner system S(5, 6, 12).
The 66 complementary pairs of hexads are the images under the action of M, of the
generic hexad pair Q, N. Observe that f = (yA)® so in fact M, is generated by «, y, A.
Our original subgroup L,(11) was generated by a, f, y. Another L,(11) subgroup is
generated by o, B, A. The original L,(11) s transitive on the 12 symbols while the other
L,(11) acts on only 11 of them. This is analogous to the previous cases. However, the
L,(11) generated by «, §, y is maximal in M ,, while the L,(11) generated by o, f, Aisa
subgroup of M ;, so there can be no question of an automorphism of M, mapping

these two groups onto each another. On the other hand we have an automorphism 8
defined by

=07l f=p =y, A=A (117

The 24 points of the projective line PL(23) can be labelled by Q = {0123...220}
consisting of the marks of GF(23) and the symbol co. The homography group L,(23) is
generated by .

wi—i+1, friio2, ypi-o—1/i (1.18)

(modulo 23). As permutations,

(012345678910111213141516171819202122),

(124816918133612)(5102017 11222119157 14),

=(000)(122)(211)(4 17)(8 20)(16 10)(9 5)(18 14)(13 7)(3 15)(6 19)(1221)
(1.19)
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The group is extended to the Mathieu group M,, by the supplementary generator
0=(75212010)2214 1711 19)(13 9128 16)(1 184 26). (1.20)

In fact M,, is generated by a, f§, and y4, since (y5)° =y and (y8)® = 4.
We have

70=(00)(315)(1144116221817219)(5122016792181013).  (1.21)

The generators «, f§, and ¢ generate M, (the one-point stabilizer fixing the symbol o).
M, is the automorphism group of the Steiner system S(5, 8, 24). The automorphism
group is transitive on the 759 special octads of the Steiner system, and on the 2576
umbral dodecads (an umbral dodecad is constructed as the symmetric difference of two
special octads with just two common symbols). Denoting the quadratic residue set by Q
={0124816918133612} and the complementary set by N, then Q, N is a generic
pair of complementary umbral dodecads of the S(5,8,24). A complementary pair of
umbral dodecads is called a ‘duum’.

2. Correspondences

We have mentioned that S, is extended to a group S¢2 by including the automorphism
6 of S¢ as a supplementary gencrator. This group S,2 can be realized as a permutation
group on twelve symbols. In fact, S¢2 occurs in M,, as the stabilizer of a
complementary hexad pair in S(5, 6, 12). To see this, set up correspondences between
Q(5) and Q(11), and between Q(5) and N(11), as follows

Q: 0123 4 o

o 139 5 4 0 @1
N({L): 8 2 6 7 X o

(i.e. i—1/4" and i— — 3! modulo 11). The permutations of S¢ on €(5) now induce
permutations on Q(11) and on N(11). Consider the effect of acting on Q(11) and N(11)
simultaneously with the two inequivalent representations of Sg. Thus the a of S¢ is
realised on Q(11) as the permutation

(13954)(8267X), 2.2)

which is just the f§ of M. The permutation t of S is realised on Q(11) by the induced
action of t on Q(11) and = on N(11): :

(8 00)(10)(67)(2X). } (2.3)

This permutation also belongs to M, (by a time-consuming process of trial and
error and intuition, it was found to be A", where 5 = o~ ?ya* 2. There may be a simpler
expression. A straightforward test for whether any particular permutation on €(11)
belongs to M, will be revealed in § 4). Finally, the automorphism 6 of S is realised on

R 113
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Q(11) by an interchange of Q(11) and N(11):
(18)(32)(96)(57)(4X)(0 o). (2.4)

This also belongs to M ,. As is easily verified, it is (yA)>.

Incidentally: under the above correspondence, the f, y and & of Sg induce
respectively, A, A* " and A**¢” of M. ’

Analogously to the above, M, can be extended to M;,2 by incorporating the
automorphism 6 of M, as a supplementary generator, and this M,,2 occurs as a
subgroup of M, in the role of stabilizer of a duum of the Steiner system S(5,8,24). To
see how this works, set up the following correspondences Q(11)— Q(23) and Q(11)
—»N(23)Z

oty 0 12 3 4 5 6 7 8 9 X

o3 3 1318 9 16 8 4 2 112 6 0 (29
NE3: 15 7 14 5 10 20 17 11 22 21 19 o

(i— —2*% and i—1/2'"7). Realize M, as permutations on Q(23) by inducing the
actions of &%, B,7, A of M, on N(23), accompanied by the actions of «, §,7, A on Q(23).
Then the o and f of M, induce, respectively, the permutations B and § of M,,. The
permutations induced by y and A of M, also belong to M, (a simple test for this will
be revealed later). The automorphism 6 of M, is realized as an interchange of N(23)
and Q(23). It is in fact just the y of M.

A set of three special octads of S(5, 8, 24), with no symbol in common, is called a trio.
L,(7) occurs as a subgroup of M, as a subgroup of the stabilizer of a trio. As a generic
trio, we can take the three octads chosen by Curtis for the construction of the miracle
octad generator (MOG) [4][5]. We set up correspondences between Q(7) and each of
these three octads, as follows:

Q7 0 1 2 3 4 5 6

8 20 14 15 3 18
13 7 11 10 16 2 17
1 12 2 6 521 19

(2.6)

o b~ O

Then the permutations o, f and y of Ly(7) induce permutations of (23), which, as we
shall show in § 6, belong to M 5. (Quite different L(7) subgroups of M ,, are the octern
groups [31[5], which we shall not be concerned with in the present work).

3. The hemi-icosahedron and Coxeter’s eleven-celled polytope

The group As is the rotation group of an icosahedron. The representation of it as a
transitive permutation group on six objects corresponds to the even permutations of
the six diameters, brought about by the rotations. Its representation as the group of
even permutations of five objects corresponds to the effect of the rotations on either a set
of five inscribed cubes, or a set of five inscribed tetrahedra [8], or a set of five
circumscribed octahedra [7], or a set of five trios of mutually perpendicular golden
rectangles [7] (figure 3).

~==
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T The full symmetry group of the icosahedron, including reflections, can be generated

' by three reflections R, R,, R; satisfying ;
Rlz = Rzz = Rs3 = (Rzka)2 = (R1Rz)3 =(R1R3)5 =1 (3.1)

They can be chosen to be the reflections in the three diametral planes 36, 25 and 34
respectively (figure 3).

R, = (15)(24)(ae)(bd)
R, = (16)(34)(af)(ce), : (3.2) |
Ry = (1£)(25)(ab)(be). P

The permutation R, R,R; = (13245achde) (6f) of order ten acts cyclically on the vertices
of a Petrie polygon [8]. (R,R,R5)° = (1a)(2b) (3¢) (4d) (Se) (6f) is the central inversion. L
The group can be restricted to the factor group A by including (R,R,R3)° =1 as an o
extra generating relation. We then obtain generating relations for As in the form [

Ry =R;* =Ry =(RyRy)* = (RiRy)’ ]
= (RyRy)*=(RR;Ry)* = 1. (33) |

The generating relations for L,(5) ~ A given by Conway [3] are obtained immediately

Figure 3.
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by substituting

Ry=0af, Ry=fy, Ry=y. (34)
That is, Conway’s generators are given by

a=R;R,R3, f=R,R;, y=R,. (3.5

(The S, T and R of Todd [15] are respectively o, y and o). The simplest set of generating
relations for A5 is that of the ‘icosian calculus’ of Hamilton [8], with only two
generators 1 and x satisfying

P=x3=() =1 (3.6)

They are obtained from (3.3) by substituting
1=R,R;, K=R,R,. (3.7

Employing (3.7), we find that xix~'1=(R,R,R;)* and hence (k1™ '1)> = R;R,R;.
We obtain then the inverse of the relations (3.7), in the form

Ri=(kx™ ) = (™ Y2,
Ry = (ki ™ 1)1 = ()eic ™ L0)%x, (3.8)
Ry = (k™ M) o = (i~ i)

It is time-consuming, but not difficult, to deduce all the relations (3.3) from (3.6) and
(3.8).

The rotation group As of an icosahedron is the symmetry group of a hemi-
icosahedron (icosahedron with opposite points identified). The hemi-icosahedron has
6 vertices, 15 edges and 10 faces. Half-turns about mid-points of edges are not
distinguishable from reflections, and central inversion is the identity. In figure 4, the six
vertices have been labelled by the six symbols of Q(5). The permutations

R, =(04)(13), R,=(000)(23), Rs=(0co)(14) (39)

are reflections in the three diametral planes o, 6,, 75 through the edges 200, 14 and 23
respectively. Alternatively (and equivalently), they are half-turns about the mid-points
o"the edges 04, 00 and 14 respectively. It is easily verified that a, f and y of L,(5) ~ 4 s
are obtained when (3.9) is substituted into (3.5). The five synthemes (1.6) correspond to
the five sets of mutually perpendicular golden rectangles inscribed in an icosahedron.

Ao
Sl

Figure 4.
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r ten synthemes correspond to ten trios of golden rectangles like the one in
The ten trios are permuted by the rotations of the icosahedron.

hexads of the Steiner system S(5, 6, 12) on Q(11) are obtained from the generic
11) by applying the permutation «(1.15) repeatedly. These eleven hexads are
| among themselves by the L,(11) generated by a, f# and A. The eleven hexads
ied as sets of labels for the vertices of eleven hemi-icosahedra. In figure 6, the
sahedron of figure 4 has been relabelled by the symbols of Q(11), according to
spondence Q(5)— Q(11) given in (2.1).

1 this hemi-icosahedron (0). Eleven hemi-icosahedra (i) (ieQ(11)) are labelled
€ labelling of the vertices of (i — 1) is obtained from the labelling of the vertices
idding one to each vertex label. We then find that, for any face of one of the
sahedra, there is just one other hemi-icosahedron with a face labelled by the
ee symbols. By identifying vertices that carry the same symbol, the hemi-
ra fit together to form a polytope. This remarkable geometrical object was
:«d by Griinbaum in 1976 [11] and independently by Coxeter in 1984 [9]. It has
38, 55 edges, 55 faces and 11 cells. Its symmetry group is L,(11) and it is self-

1bgroup A that leaves the cell (0) invariant is generated by the three
-y permutations of Q(11) induced by Ry, R, and R; under the correspondence
11):

S, =(14)(35)(27)(8X),
- S, =(10)(27)(59)(6X),
Sy = (26)(7X)(10)(34).

> the permutations A, A* *A and A* °. Observe that §,5,S; is f and S,S; is A.
ine S, to be reflection in the 145 face. This interchanges the two cells (0) and
find

S4 =(0X)(29)(36)(78).

ly verified, this is A*'. Finally, one can verify that (S,5,53)* S;S35, = . Thus
5 and S, generate L,(11).

If-duality of the polytope corresponds to the automorphism 6 of L,(11) (1.17).
nutations a, f, A of the eleven vertices correspond, respectively, to the
tions o~ !, B and A of the eleven cells.

Figure 5. Figure 6.
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4. The ternary Golay code

Let #” be the vector space of 12-tuples over GF(3), with a length measure imposed; the
12-tuples will be called words and the weight of a word is the number of non-zero
components. The set Q(11) can be employed as an index set for labelling the canonical

base vectors (words of weight 1) v;(ieQ)). We find it convenient to let the index ieQ run
through the values in the order

8267X013954 co. 1)

The extended ternary Golay code is the subspace #” of ¥~ spanned by the rows w; (ieQ)
of the 12 x 12 matrix W defined by

1, i+jeN
W, = ) .
i {_1, i+je0 (4.2)

With the canonical ordering (4.1) for the row and column labels,

X j Y |
T T
I T R :
W= Y - —x (4.3)
L S L

where jis a column of five 1s and X and Y are the 5 x 5 matrices X =circ(—11—1
—11), Y =circ(—1—111—1)(ie. the first rows of the matrices are as indicated and
each row is obtained from the row above by cyclically shifting one place to the right).
The elements of %~ (12-tuples consisting of linear combinations modulo 3 of the rows of
W) are called codewords.

The code contains 3° words; the word of zero weight, 264 of weight 6, 440 of weight 9
and 24 of weight 12 (1 + 264 + 440 + 24 = 729 = 3°). They can be characterized as the
following particular linear combinations:

+ w; are the 24 codewords of weight 12

+ (w; +w; £ w;) are the 440 codewords of weight 9
+ (w; + w;) are the 264 codewords of weight 6. 44

The effect on the w; of a change of basis in " is obtained by multiplication of W on the
right by a nonsingular matrix. Multiplying by

~Y j
T
i1
- 4.5
s - 5)
o=
gives
—K j
IG —'jT 0
" 4.6
W K I (4.6)
_jT 0
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where /¢ is the unit 6 x 6 matrix and K = circ (0 1 — 1 — 1 1). We see immediately from
the form of W’ that_“/ff is 6-dimensional; denoting the ordered index sets 8267X0 and
1395400 by N and Q respectively, we see that either w(ie N) or wi(ieQ) provide a basis
for #". The components of the second basis with respect to the first are given by the

K i
rows of( ) J ), ie.:
_] 0

-

0 1 -1 -1 1
1 0 1 -1 -1
-1 1 0 1 -1
-1 -1 1 0 1

1 -1 -1 1 0
L -1 -1 =1 -1 -1

4.7

S#M\Ow-—
O - = e

Of course, we have not preserved weights in going from W to W', so we cannot
infer that the rows of W' span #". On the other hand, by multiplication on the left by S,
we get

K —j
U=|_kx -j Ll (4.8)

o0

Either the first six rows of U, uie N), or the last six rows, u(ie0), provide an alternative
basis for the code.

The first of these is essentially the basis given originally by Golay [10].

The automorphism group of the Golay code consists of the linear transformations on
¥" that preserve %~ and the weights of codewords. It is a binary Mathieu group 2M,,
generated by the permutations

A:vj= v, Biv—vy,

Cv;—> tv;y, Divy—=v,, (4.9)

iy?

‘of the 24 words oflength 1, + v;. The signin Cis + forieQ and — forieN. Theeffect on
the w(ieQ) is

Awi=wy, Biw;—wg,

Cw;=> Fwy, Diw—>wip, (4.10)
(where the sign in C is —for ieQ and + for ieN). This remarkable result is due to
Conway [3].

We now interpret the words projectively, as sets of homogeneous coordinates of
points in a PG(11, 3), which we call 4. The code words are the sets of homogeneous
coordinates of a subspace PG(5, 3) which we call #". The twelve points w,(ieQ) are thus
twelve points in PG(5, 3) whose coordinates are given by the rows of I and the rows of
the matrix (4.7). They are thus just the 12 points of Coxeter’s configuration, which was

shown by Coxeter[6] to have an automorphism group M , consisting of collineations.
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The correspondence between our notation and Coxeter’s is:

Wg Wy Wg Wq; Wy Wo Wy W3 We W3 W, w, @i
1 2 3 4 5 f a b ¢ d e 6 ’

Interpreted as collineations in PG(3, 3), the transformations (4.10) are the collineations
given by the matrices

T0 0 0 1 0 07 0 1 00 0 07
0 1 -1 -1 1 1 001000
-1 -1 1 0 11 000100
A‘001000’B‘000010’
-1 1t 0 1 -1 1 1 0000 0
Lo 0 o 0 1 0] Lo 000 0 1
1 -1 =1 1 0 17 1 0 0 0 0 07
-1 =1 1 0 1 1 0000T10
-1 1 0 1 -1 1 000100
C*101—1—11’D_001000’
0 1 —1 —1 1 1 010000
L11 11 1 0] LO 000 0 1]

(4.12)

(Check: multiply I and the matrix (4.7) on the right!). They generate the group M, of
collineations that permute the 12 points.

The matrix W is symmetric and satisfies W2 = 0. It follows immediately that # lies
entirely in the quadric x,x; = 0 (ieQ) in ¥ and that % coincides with its polar 5-space.
Thus, a point of #is in #” if and only if it lies in the polar primes of all the twelve points
wi(ieQ). Therefore, a word with components c(ieQ) is a codeword if and onlyifcw; =0.
This establishes a one-to-one correspondence between points in % and syzygies
satisfied by the twelve points (a syzygy is an equation expressing the vanishing of a
linear combination of the w;). Since there are 264 codewords of weight 6, there will be
264/2 = 132 syzygies of length 6 satisfied by the coordinate of the twelve points of w;.
Coxeter lists them all explicitly. Each syzygy of length 6 expresses the condition that 6
points lie in a 4-space. Thus, the 12 points lie in sixes on 132 primes (hyperplanes)
ofthe PG(5, 3). Each hexad of points is one of the hexads of the Steiner system S(5, 6, 12).

It is useful at this stage to give a brief outline of the results of Coxeter’s investigation
of the configuration of 12 points in PG(S, 3).

A hexastigm is a set of six general points in a projective 4-space. A pair of Mdbius
simplexes in a projective space is a pair with the property that each vertex of one lies in a
prime face of the other. The twelve points in PG(5,3) can be regarded as a pair of
complementary hexastigms in 66 ways, or as a pair of Mobius simplexes in 395 ways.
The automorphism group M, can be generated by 395 involutory collineations, each
of which interchanges the simplexes of a Mdbius pair. The coordinates of the points
ABCDEF of a hexastigm can be chosen (by adjusting irrelevant factors) to satisfy a

~7
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syzygy
A+B+C+D+E+F=0. (4.13)

One can then define 40 associated points as follows:

15 *harmonic’ or negative points such as A — B etc. 15 ‘positive’ points such as A + B
—C—-D(=C+D—-E~F=E+F—A-B)etc. 10 ‘minor’ points suchas A + B+ C
(= =D —E~F) etc. If the underlying field of the projective space in which the
hexastigm lies is GF(3), the 40 associated points all lie in a 3-space (since they are all
obtainable as linear combinations of, for example, A — F, B—F, C—F and D—F ).
Moreover, they are all of the points of the 3-space in which they lie (40 = (3* — 1)/2).
The negative points can be denoted by duads such as (4B) and the positive points by
synthemes such as (4B. CD. EF). The minor points may be denoted by P 4pc (= Ppgr)
etc. The associated 3-spaces of a pair of complementary hexastigms coincide. More
precisely, the negative points of each coincide with the positive points of the other, and
the minor points of one coincide with minor points of the other. Each of these
coincidences is indicated by several of the 132 syzygies. For example, consider
Coxeter’s two generic hexastigms 123456 and abcdef (in our notation, w;(ieN) and
w;(ieQ)). The coincidence (16) = (af. cd.eb) is seen in the three syzygies

6+c+d=1+e+bb6+e+b=14+a+f,6+a+f=1+c+dofCoxeterslist,and
P, ;3 =P, isseeninthefoursyzygies! +2+3+a+e+ f=0,4+5+6=a+e+ f,
142+3=b+c+d,4+5+6+b+c+d=0.Thetwo generic syzygies 1 +2+3 +4
+5+6=0,a+b+c+d+e+ f=0together withall the syzygies associated with the
coincidences of associated points, account for the whole list; 2 + 4-10 + 3-15 + 315
=132

The coincidences between negative points of 123456 and positive points of abcdef
establish a one-to-one correspondence between number duads and letter synthemes.
The table of duads and synthemes obtained from this one by the permutation (1a) (2b)
(3¢) (4d) (Se) (6f) lLists the coincidences between negative points of 123456 and positive
points of abcdef. The permutation interchanges these two hexastigms and also the two
simplexes 12345f, abcde6 of a Mbius pair. It corresponds to an involutary collineation
in M,,. In our notation, it is the collineation with matrix (CD)’ (see (2.4) and (4.11)).
This matrix is (4.7) with the sign of the final row changed.

Of the (35-1)/2 = 364 points of PG(5,3), twelve are the points w;, 132 occur as
positive or negative points and 220 occur as minor points (12 + 132 + 220 = 364). The
positive or negative points are the w; + w; which arise from the codewords of weight 6
when the Golay code is interpreted projectively, and the minor points are the w; + w;
+ w, which arise from the codewords of weight 9. The twelve points w; of course arise
from the words of weight 12.

The words of weight 1 can be interpreted projectively as the coordinates of twelve
primes in ¥ (prime faces of the reference simplex). We call these twelve primes m{ieQ).
Consider the intersection of the primes 7; by the 5-space #". We get twelve primesin %",
which will also be called 7;. Referred to the coordinate system that we have established
in # (with w(ie N) as reference simplex), the coordinates of the twelve primes m(ieQ)
are given (in the order (4.1)) by the columns of the matrices

X j Y
AT o

y
{
i
i
‘
|
;
o
P4
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(Proof: Let ¢ be a sextuple of homogeneous coordinates of a point in W. The
components of this point, referred to the coordinate system of ¥, are given by the 12-
tuple obtained by multiplying the row ¢ by

X Y

Y
since this array is just the upper half of W and gives the coordinates of the base points
wi(ieN), of #". The condition for a point to lie_on 7, is that the ith component of its 12-
tuple shall vanish. Therefore, the prime 7; of %" is given by the ith column of the above
array).

Clearly, the 12 primes x; of # are the 12 primes introduced into Coxeter’s

configuration by Todd [16]. The correspondence between our notation and Todd’s is
the following:

Mg My Mg Mg Tx To Ty T3 Mg N5 Ty To 4.15)
a b ¢ d e -6 -1 -2 -3 -4 -5 f

. . X j
Multiplying the two matrices (4.13) on the left by M~ = ( T ]1> transforms
iTo—

K j -I5 0 . :
them to (}_T ]0> and < 0 s 1) respectively. The columns of these matrices, taken in
order, are Coxeter’s coordinate sextets a, b, ¢, d,e, —6, — 1, —2, — 3, — 4, — 5, f. Thus,

the twelve primes are the polars of the twelve points, with respect to the quadric whose
o -Y j .
matrix is M =< . Jl>' The polars of Coxeter’s 123456abcdef are, respectively,
J

Todd’s 123456abedef. There are 95040 quadrics with the property that the twelve
primes are the polars of the twelve points (obtained from M by multiplying on the right
by the transpose of any matrix of the collineation group M, ,). A different quadric, more

suitable to our present notation, is the quadric with matrix Q = ( T Jl > Multiplying
—J

. -X
the matrices (4.7) on the left by 0! ——-( it _]1> gives, respectively, I and the

transpose of the matrix (4.7). Thus, with respect to this quadric, the polarity is
o w(ieQ).

The polarities show that the configuration of 12 points and 12 primes in PG(5, 3) is
self-dual. One can immediately infer the dual of all the properties of Coxeter’s
configuration: the 12 primes pass in sixes through 132 points and can be regarded in 395
ways as a pair of Mobius simplexes. Given any ‘dual hexastigm’ (six primes through a
point), one can construct 40 associated primes: 15 ‘negative’ primes, 15 ‘positive’ primes
and 10 ‘minor’ primes. The associated primes of two complementary dual hexastigms
coincide.

The 364 primes of PG(5, 3) can be classified as follows. Twelve of them are the 7,
arising from the words of weight 1 of ¥". 132 of them occur as ‘positive or negative’
primes; these arise from the words of weight 2, 7; +- ;. And 220 of them occur as ‘minor’
primes; these arise from the words of weight 3, 7; + 7; £ 7.

In ", the words of weight m have 12 — m zero components. Hence, in ¥, a point whose
coordinate [2-tuple is a word of weight m lies on just 12 — m of the primes ;. In particular,

~f

]
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in %" the twelve points w; lie on none of the twelve primes m;, the 220 ‘minor’ points each
lie on just 3 of the primes 7,, and the 132 ‘positive and negative’ points each lie on just 6
of the primes 7;. The dual of this latter statement is: the 132 ‘positive and negative’
primes each contain six of the twelve points w,. Thus the primes in which Coxeter’s 132
hexastigms lie are the ‘positive and negative’ primes m; + m;. In fact, the two primes 7,
tm; (for fixed i and j) are the primes of a complementary pair of hexads.

Given any hexastigm of the points w,, one can associate with it, according to the
above, two of the primes a;. We get 132 octads consisting of six of the points and two of
the primes. Dually we get 132 octads consisting of two of the points and six of the
primes. We can also form 495 octads consisting of four points and four primes, as

12
follows. There are ( 4 ) =495 ways of choosing four of the twelve primes. Going over

to the PG(11, 3) in which these four primes are specified by words of weight one, we can
see by studying the rows of W that there are just four ‘positive and negative’ points that
lie on all four of the primes. For example, ng, 7, 74 and 7. all contain w, + We, Wit Wy,
Wo— W, Wy +ws. Just four of the symbols w; have not appeared, namely wg, w,, w, and
w4. So we can specify an octad mgm,mgm, wgw,wyw,. The total number of octads is
now 132+ 132 +495=759. Todd [16] shows that these octads are the octads of a
Steiner system (5, 8,24) on the 24 objects 7;, w;.

5. The binary Golay code

Let ¥" now denote a vector space of 24-tuples over GF(2) with a length measure
imposed on it; the weight of a 24-tuple is the number of non-zero elements. The 24-tuples
will be called words. The set Q(23) can be used as an index set labelling the base vectors
v; (ieQ) and we let the index i run through Q in the order

5 10 20 17 11 22 21 19 15 7 14 0

(5.1)
12 4 8 169 18 13 3 6 12 o

(5 times the powers of 2 modulo 23, in order, followed by zero, followed by the powers of
2, and finally the symbol co). We shall call the ordered set consisting of the first twelve of
these symbols N, and the ordered set consisting of the last twelve will be called Q. The
extended binary Golay code is the subspace % spanned by the rows N; (ieQ) of the
matrix N defined by

_[1, i+jeN(23) (52)
Y700, i+jeQ3).

With the canonical ordering of the row and column labels,

X j J—l
T
i 00 1 53
N= Tz (5.3)
o

where j is a column of 1s, 0 is the zero element or a row or column of eleven 0Os,

g
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depending on the context, and X, Y and Z are the 11 x 11 matrices

X =circ (11010000101),
Y =circ (01001100011),
Z =circ (00101111010). (5.4)

The 12-tuples of € are called codewords. There are 212 codewords; one of weight zero,
759 of length 8,2576 of weight 12, 759 of weight 16 and 1 of weight 24(1 + 759 + 2576
+ 759 + 1 = 4096 = 2'2). Observe that the rows of the matrix N are 23 words of weight
12 and one of weight 24 (N ). Thus there is a fundamental asymmetry that was not
present in the case of the ternary code—the rows of W were all of the same weight. This
distinction turns out to be crucially important.

Changing the basis in ¥~ multiplies N on the right by a non-singular matrix.
Multiplying by

. J
it 1
§S= |’ R 5.5
j (5.5)
T
where P = circ (01100000011) and Q = circ (10011111100), gives
Iy, J
T
- 0 :
N' = oo, (5.6)
j 0
where
L = circ (111011100010). (5.7)

We see from the form of N’ that % is 12-dimensional, and that either the first twelve
rows of N(N,, ieN) or the last twelve rows (N, ie(Q) provide a basis for .

Analternative pair of bases for & is obtained by multiplying N on the left by S. We get
the same matrix N'(5.5), but the interpretation is different. We establish in this way that
either the first twelve rows of N' or the last twelve rows of N’ provide a basis for % (this
was not established by the previous derivation of N'!). We shall call the rows of N,
uieQ). The basis u(ieQ), consisting of the rows of the array

L
<112 - Jo> (5.8)

is the usual basis for the code. This elegant characterization of the code was discovered
by Karlin [12]. Golay’s original characterization [ 10] had a different matrix in place of
L, related to L by permutations of the rows and columns. It is remarkable that the
circulant L in Karlin’s construction of the code is related to the quadratic residues
modulo 11:The first row of L, (11011100010), is obtained from the set Q/(11)=
0123456789X by replacing each symbol by 0if it is in N(11) and by 1 if it in Q(11). The
array (3.7) is essentially the array employed by Leech [13] in the construction of his
celebrated lattice [18]. :

-
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Omitting the null word, % can be interpreted projectively as a subspace PG(11,2)
(which we call %) of a PG(23,2) (which we call 7). Choosing the points N(ieQ) as the

vertices of the reference simplex in €, the homogeneous coordinates of the other twelve

points N(ieN) are given by the rows of <LT 6), ie.
J

L

NI R o = N = R =

5
10
20
17
11
22
21
19
15

7
14

0

O m OO O MmO = =
—_ . O OO RO = O
—_ O m O O OO
—_, O R O = OO O
—_ O O = OO O
—_m = O === O OO0 = O

—_ e m OO O O O
—_ kOO O O = O
—_ O O O O O
—_—O O O O O

0 (59)

The 24 points N (ieQ) are the 24 points in PG(11,2) studied by Todd 1 6] [17], which
are permuted by a group M,, of collineations.

The automorphism group of the binary Golay code is an M ,, of permutations of the
words of length 1. It is generated by the three permutations

A=, Biy—ovy, Hiv—v, (5.10)

where «,  and 9 are the permutations of (23) given in (1.19) and (1.21). The effect of A
and B on the N,(ieQ) is found to be given by the permutations

A:N»Ny-1, B:Ni— Ny (5.11)

but H does not permute them. The word of length 24, N ,,, remains fixed, but the other
23 are mapped to 23 different words. The images of the N, are, however, still in the
subspace 4.

When this M, is interpreted as a group of collineations in &, we find that A, Band H
are the collineations with matrices given by

1
_1

O — O OO — OO — —
O, OO =, OO0 OO O
ORr P OO0 OO0 OO
—_—m e O O O == O OO

OO = —m O O — OO -
O O OO OO m = OO —
OO OO M = O == OO —
OO0 OO R O OOCo—
OR OO, OO, OO~
O O OO O OO
O OO0 OO
COOOO L OO0 OO

=
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[0 1 2
0 0 1 [
00 01
00001
0 00 0O0 1
B={0 0 0 0 0 0 1 )
000 0O0OTO 071
0 000O0OTO0O 01
000 0O0O0OO0OTO0TO0 1
000O0O0OO0OO0OO0T 01
1 0000O0O0OCOO0OO0OO
00 000O0O0O0O0COO 1]
[0 00110110101
1101101000 O01
110100001101 )
1 000O011O01101 1
001101101001
H=|1 01101000011
1 01000O0T1T1T0T1"1
0000171011011
011011010001
01 10100O0O0T1T1°1
6010000110111
| 00 000O0O0CO0OO0O0OGO0O 1 | (5.12)
That the collineations 4 and B have the correct action (5.11) on the 24 points N (ieQ)
is easily checked: the coordinates of these 24 points of @ are the rows of (5.9) and the unit
matrix, so their images under the action of 4 and B are given by the rows of the matrices i
given by multiplying (5.9) and I,, on the right of the matrices 4 and B. '
The matrix H was obtained as follows: from the matrix N (5.9) we see that N, =
v{1020211914416918 136 00} (the notation vS means > v;(ieS), where S is any ’i

subset of Q). Acting on this with the transformation H given by (5.10) gives the image
of Ny, which is v{1316 18 1411721 175220}. In terms of the basis ufieQ) given by
the last six rows of N’ (5.6). thismust be u {13168 1 4} (which can be verified by actually
adding these six u;, thus establishing that the image of N, really is in %). Finally we go

over to the basis N, (ieQ) which is related to the basis u/ie() by the matrix QT ]0
appearingin (5.5). We find u {13168 14} = N{8 16 18 13 6 co}. This establishes the first
row of the matrix H. (The process sounds complicated when described but in practice is
quite rapid).

Observe the curious structure of the matrix H. The 11 x 11 submatrix obtained by
omitting the final row and final column has the property thateach row is obtained from
the previous row by cyclically shifting three places to the left. The explanation for this
property is as follows. The « and 8 of M 12 Satisfy the generating relation of = o3 [3].
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Recall that they correspond to the f and 6 of M, , under the embedding of M, in M,
discussed in § 2. Therefore, the § and & of M,, satisfy 8% = 8°. Together with the M,
generating relation (fy)* = 1, this gives f(y6) = (y5)8 . Hence BH = HB™ 3, which is
the structural property of H that we noticed.

Since the point N, remains invariant under the group M,, of collineations, the 12-
dimensional representation of M,, generated by A4, B and H is reducible. An eleven-
dimensional representation of M, , is obtained by removing the final rows and columns
from the matrices 4, B and H. (In the projective geometry of € this corresponds to
projection from the point N, (00...01) to the prime [00...01].

Presumably, the 11-dimensional representation of M, discovered by Paige [14] is
equivalent to the one generated by the reduced matrices A and B together with a matrix
D obtained by omitting the last row and column from H®. These three matrices
represent the generators o, 5,0 of the M,, that fixes v,,. We find

0 0 1 01 01010 17
10100101010
01 010100T1O0°1
10101010100

D=1 0010101010
01010010101
10101010010
010101010160
01001010101
10101001010

01 01010100 1 (5.14)

A different 12-dimensional representation of My, is obtained by considering the
collineations on % which permute the 24 points-N (i€Q): This is generated by the 4 and
B of (5.12) together with

F:N;—N,; (5.15)

The matrix of the collineation F on % is

101110001011
11000101 1011
001011011101
0110111000T1:1
011100010111
F=|1 00010110111
010110111001
110111000101
111000101101
000101101111
101101110001
[t 1111111 1110] (5.16)

as is easily verified by multiplying I,, and the matrix (5.9) on the right.

e e 5 S



172 Eric A Lord
6. Octastigms and dodecastigms

An octastigm may be defined as a set of eight general points in a projective 6-space. The
coordinate sets of the eight points of an octastigm ABCDEFGH can be chosen to satisfy

a syzygy
A+B+C+D+E+F+G+H=0. (6.1)

. 8 . 8
Associated with an octastigm are ( 2) =28 duadic points A + B etc., and ( 4> =35

tetradic points A+ B+ C+ D etc. In a projective space over GF(2), these points
associated with an octastigm all lie in a PG(5,2) (their coordinate sets can all be
obtained as linear combinations of those of six of the duadic points such as 4 + H,
B+H,C+H,D+H,E+H,F+ H); indeed they are all the points of the PG(5,2) in
which they lie (28 +35=63=26—1).

The tetradic points associated with an octastigm in a projective space over GF(2) lie
in sevens on thirty planes. For example, the seven points

A+D+G+H=B+C+E+F,
B+E+G+H=C+A+F+D,
C+F+G+H=A+B+D+E,
D+B+C+H=A+E+F+G, (6.2)
E+C+A+H=B+F+D+G,
F+A+B+H=C+D+E+G,
D+E+F+H=A4+B+C+GgG,

alllieina PG(2,2)(they are all given by linear combinations of, for example, 4 + D + G
+H,B+E+G+Hand F+ 4+ B+ H). The Fano 7, whose vertices are the seven
points (6.2) is indicated in figure 7.

A dodecastigm is a set of twelve general points in a projective 10-space. The
homogenous coordinate sets of a dodecastigm ABCDEFGHIJKL can be made to
satisfy a syzygy

A+B+C+D+E+F+G+H+I+J+K+L=0. (6.3)

. . 1
Associated with a dodecastigm are ( 22)=66 duadic points, (142

> =495 tetradic
points and % ( 6 ) =462 hexadic points. In a projective space over GF(2), these

F+A+B+H

A+D+G+H C+F+G+H  B+E+G+H

Figure 7.
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associated points all lie in a 9-space, and are all the points of the PG(9,2) in which they
lie (66 + 495 + 462 =1023 =210 — 1),

The set of 24 points N(ieQ) in PG(11,2) constitute 2576 dodecastigms (in
complementary pairs). The 63 associated points of a dodecastigm coincide with the 63
associated points of the complementry dodecastigm. The situation is analogous to that
of the 12 points in PG(5, 3), which constitute 132 hexastigms, the associated (positive,
negative and minor) points of a hexastigm coinciding with those of the complementary
hexastigm.

Moreover, the 24 points constitute 759 octastigms, corresponding to the octads of a
Steiner system S(5, 8, 24). The dodecastigms correspond to the umbral dodecads of the
Steiner system (Todd). The automorphism group of the Steiner system is realized as the
group M,, of collineations generated by 4, B (5.12) and F (5.16).

A set of three octastigms which together contain all 24 points corresponds to a trio of
the Steiner system. The three octastigms of a trio have seven of their tetradic points in
common—the seven points of the unique PG(2, 2) common to the three 6-spaces of the
octastigms. The configuration of 24 points in PG(11,2) can be regarded as a trio of
octastigms in 3795 ways.

In order to establish the above facts, recall that the coordinatisation of % can be
chosen so that the N,(ieQ) are given by the rows of the unit 12 x 12 matrix and the
N,(ieN) by the rows of (5.9). We thus get eleven syzygies of length 8, corresponding to
eleven octastigms, each expressing the coincidence of a duadic point of the generic
dodecastigm N,(ie N) with a hexadic point of the generic dodecastigm N;(ieQ). They
are obtained by applying the powers of the transformation B:N;— N,; to the syzygy

N{5c0}=N{1 2 8 16 9 6}. (6.4)
We call these syzygies of type (2,6). The final row of (5.9) provides the syzygy

NO 1 2 4 8 16 9 18 13 3 6 12}=0 (6.5)
of length 12 and type (0, 12), corresponding to the generic dodecastigm N(i€Q). (The
notation NS, SeQ) denotes ZN(ieS)). Adding these twelve syzygies in pairs gives ( 122>

= 132 syzygies of type (2, 6). Each indicates an octastigm and at the same time indicates
a coincidence between a duadic point of N;(ieN) and a hexadic point of N;(i€Q).

Adding them in fours gives ( 142> =495 syzygies of type (4, 8). Similarly, by choosing
N,(ieN) as the reference points, we get eleven syzygies of type (6, 2), obtained from
N{l 0}=N{5 20 21 19 15 14} (6.6)
by applying the powers of B, and one of type (12,0), namely
N{5 10 20 17 11 22 21 19 15 7 14}=0. 6.7

Adding these twelve syzygies in twos gives 132 of type (6, 2) and adding them in fours
gives 495 of type (8,4).

495 syzygies of type (4,4) are obtained either by adding (6.5) to those of type (4, 8) or
by adding (6.7) to those of type (8,4). We obtain the number of octastigms,

13241324495 =759. (6.8)
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They constitute the octads of a Steiner system S(5,8,24). (The proof of this, which
consists of showing that any five of the points belong to a unique octad, has been given
by Todd [16]. The automorphism group of the S(5,8,24) is of course the M,, of
collineations that permutes the N;, generated by 4, B and F.

We have seen that 66 of the hexadic points of N,(ieQ) coincide with duadic points of
N;(ieN). The remaining 396 hexadic points of N,(ieQ) coincide with hexadic points of
N, (ieN). This provides 396 syzygies of type (6, 6). By adding (6.5) and (6.7) to these we
get altogether 4 x 396 = 1584 of type (6, 6) (they emerge upon adding those of type (6,2)
to those of type (2,6)). We now have all the syzygies of length 12: one of type (0, 12), one

of type (12,0), 495 each of types (4, 8) and (8,4) and 1584 of type (6, 6). The total number
of dodecastigms is

1+ 1+ 495+ 495 + 1584 = 2576.

They are the umbral dodecads of the Steiner system S(5,8, 24). Given a complemen-
tary pair of dodecastigms (duum of the Steiner system) their tetradic points coincide,
the duadic points of one coincide with the hexadic points of the other, and the
remaining hexadic points coincide. Those hexadic points of one of the dodecastigms
that coincide with duadic points of the other are just the hexads of the Steiner system of
the M, of collineations that preserves the dodecastigm pair.

Finally, consider a generic trio of octastigms with no common point. We can take
them to be the three generic octads given in (2.6), which have the syzygies

N{O 8 20 14 15 3 18 oo}=0,
N{4 13 7 11 10 16 2 17}=0, (6.9)

NO 1 12 22 6 5 21 19}=0.

——

The L,(7) of section 2 induces the group L,(7) of collineations generated by

[0 000000000 1 07
001 0000O0O0OGO0TO0O
00000O0O0T1O0UO0GO0O0
101101110001
01 000O0O0CO0OOOO0DO
1T 000000O0O0OO0OTO OO
It 11111111101
01 1100010111
0000O0O0OT1O0O0OO0CO0ODO
110111000101
6000101101111

| 0 0000O0O0O0OTO0O0 1]

i

e
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OO OO, OO OO OO
OO O, OO0~ O —O
OO O OO OO OO = O OO
OO OO, OO —— O OO
O—, OO, OO — OO OCo
QOO == OO OO OO =
I-—‘OO'—-—‘OO-—‘—‘OO%

1
HO'—-#OO-—‘OOOO-—"OO'—"—‘OOOOMOOO
—_—— 0 O~ = O = O~

—_— e OO =, OO O — OO OO O = = OO — O 00O
—_—_m e O OO == OO0 OO0 SO OO OO OO~~~ = OO C
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0
1
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1
1
0
1
1
1
0
1
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—_ OO0 OO0 O = OO — —
—_— =, O O O OO OO
—_——_ O OO0 =, = O OO —

[

(6.10)

[

(induced by the o, f and y of L,(7)). That they have the correct action on the N; can be
checked by multiplying I,, and the matrix (5.9) on the right.

The scven objects P;(1.12) constructed from PL(7) correspond, under the corre-
spondences (2.6) to seven tetradic points that the three octastigms have in common:

PoN{O 8 20 15}=N{4 13 7 16)=N{9 1 12 6}
P:N{8 20 14 3}=N{13 7 11 16}=N{1 12 22 5}
Py N{20 14 15 18}=N{7 11 10 2}=N{12 22 6 21}
PyN{14 15 3 O}=N{l1 10 16 4}=N{22 6 5 9}
PoN{15 3 18 8}=N{10 16 2 13}=N{6 5 21 1}
PoN{3 18 0 20}=N{16 2 4 7}=N{5 21 9 12}

PGN{I8 0 8 14}=N{2 4 13 I11}=N{21 9 1 22}
(6.15)

T , o S
AT T T 7 IR T T R ST . L A TR
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Figure 8.

The coincidences indicated by the equality signs correspond to various other
octastigms. That these actually are octads of the S(5, 8, 24) is readily visible in the MOG.
That these seven points P; of PG(11,2) are collinear in threes (for example P, + P, +P,

=0) is easily checked. They form a Fano configuration (figure 8) and therefore
constitute a PG(2,2).

7. Twenty-four primes in PG(11,12)

The words of unit weight in ¥~ are the sets of homogeneous coordinates for the 24
reference primes in V. We call these primes 7,(ieQ). In the canonical order (5.1) they
are given by the columns (or rows) of the unit matrix I,,. They intersect Z in twelve
primes of €, which we shall also call 7;(ieQ). From the form of the matrix N, (5.3),
we see that there is just one of them, 7, that contains none of the 24 points N;(ieQ)
and that there is just one of the 24 points, N, that is not contained in any of the 24
primes. The remaining 23 points and 23 primes constitute a configuration 23,, in %.

In the coordinate system on € in which N,(ie N) and N,(ic() are given respectively
by the rows of the matrix (5.9) and the rows of I, ,, the primes m,(ieN) and the primes

(i€ Q) are given respectively by the columns of the two 12 x 12 matrices

YT 0] [z j
EF i D

(i.e. by the columns of the lower half of the matrix N). The proofis analogous to the one
given in §4 for the twelve primes of W. Multiplying these two matrices on the left by

nt= (JQT é) gives the transpose of the matrix (5.9) and the matrix I 12- Hence,

under the polarity on € with matrix

_(Z ]
n_<jT 1), (72)

the polars of the 24 points N,(i€Q) are the 24 primes ;(ieQ) (in order). (It is misleading
in the context of a projective space over GF(2) to speak of a ‘quadric’). The
configuration of 24 points and 24 primes in PG(11,2) is self~dual.

The group M, of collineations on ¥, which permutes the vertices of the reference

simplex, is given by (5.10). Of course, it induces the group M., in & that permutes the 24
primes:

Ami> 1, Bimomy, Him-om, (7.3)

0
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The M,, generated by A, B and H permutes the 24 primes, and leaves the point N,
fixed, the M 24 generated by 4, Band F permutes the 24 points and leaves T, fixed, and
the polarity IT interchanges the points and primes.

The two (reducible) twelve-dimensional representations of M,,, with o, f, y6
represented, respectively, by 4, B, Hand by A1, B, F are adjoint to each other. That s,

I'ATl= A7, TI7'BIl=(B™Y, M~HII=(F . (7.4)

Note added in proof

For a comprehensive treatment of coding theory, including properties of the Mathieu
groups and other allied topics, see Conway and Sloane [18].

References

(1] Baker H'F, Principles of geometry (Cambridge: University Press) 2 (1922) p. 221 and 4 (1925) p. 114
(2] Baker HF, A locus with 25920 linear self-transformations (Cambridge: University Press) (1946)
[3] ConwayJ H, Three lectures on the exceptional groups, in Finite simple groups (eds) M B Powell and G
Higman (New York: Academic Press) (1971) Updated and printed in [18]
[4] Conway J H, The miracle octad generator, Proceedings of the Summer School, University College
Galway (ed) M P J Curran (New York: Academic Press) (1977)
[5] Curtis R T, A new combinatorial approach to M,,, Math. Proc. Cambridge Philos. Soc.79 (1976) 25-42
[6] Coxeter H S M, Twelve points in PG(5, 3) with 95040 self-transformations, Proc. R. Soc. London A247
(1958) 279-293 (reprinted in Twelve geometric essays) (Illinois: Southern University Press) (1968)
[7] Coxeter H S M, Introduction to geometry (New York: John Wiley) II edn. (1969)
[8] Coxeter H S M and Moser W O J, Generators and relations for discrete groups (New York: Springer
Verlag) IV edn. (1980)
[9] Coxeter H S M, A symmetrical arrangement of eleven hemi-icosahedra, Ann. Discrete Math. 20 (1934)
103-114
[10] Golay M, Notes on digital coding, Proc. IRE 37 (1949) 657
[11] Griinbaum B, Regularity of graphs, complexes and designs Colloques Internationaux CNRS No. 260
(Orsay 197) p. 191-197
[12] Karlin M, New binary coding results by circulants, I[EEE Trans. Inf. Theory 15 (1969) 81-92
[13] Leech J, Notes on sphere packings, Can. J. Math. 19 (1967) 251-267
[14] Paige LJ, A note on the Mathieu groups, Can. J. Math. 9 (1956) 15-18
[15] Todd J A, A note on the linear fractional group, J. London Math. Soc. 7 (1932) 195-200
[16] Todd J A, On representations of the Mathieu groups as collineation groups, J. London Math. Soc. 34
(1959) 406-416
[17] Todd J A, A representation of the Mathieu group M,, as a collineation group, Ann di Math. Pure ed
Appl. T1 (1966) 199-238
[18] ConwayJ Hand Sloane N J A, Sphere packings, lattices and groups (New York: Springer Verlag) (1988)






