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A review of the historical background to the development of
gauge theories of gravity, beginning with the gauge transformation of
Maxwell's theory and the early attempt of Weyl to unify electromagene-
tism and gravitation. The Yang-Mills approach to gauge theories of
internal symmetries is discussed, indicating how this led to the
alectro—weak unification, and to attempts at grand unification. The
gauging of the group of tetrad rotations, and Kibble's gauging of the
Poincaré group are then introduced. Hehl's Polncarée gauge theory is
described and we conclude by mentioning some of the passible generali--
gations and extensions of Poincaré gauge theories.

In the early part of this century, after the advent of Einstein’s
theory of General Relativity (GR) in 1916,there were just two funda-
mental forces known and understood by physicists. One was gravity,
described by £instein's new theory. The other was electromagnetism,
described by Maxwell's theory. There followed several attempts to
unify these two forces - to formulate a more profound theory in which
gravity and electromagnetism would be seen to be two aspects of a single
phenomenon. Three notable attempts were Weyl's theory!, Kaluza-Klein
theory?, and Einstein-Schrodinger theory?. None of these attempts was
successful, but each has some intriguing aspects that remain important
in the more recent search for unified theories.

Weyl's theory of 1918 is a generalisation of GR, constructed so as
to be invariant under spacetime-dependent changes of scale; i.e., under
the transformation 95 Azgij applied to the spacetime metric, with
gpacetime-dependent scale parameter A. [Incidentally, Weyl called this
invariance (in German} Eichinvarianz, which translates to the English
'gauge invariance'. This is the origin of our present terminology for
invariance laws with spacetime dependent parameters). The Christoffel
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symbols are not invariant under Weyl's transformation, but if you in-
troduce an Skiliary vector field ¢i which transferms according to

by > 0y * die , o =1nx ,

you can construct an invariant connection

k k K

! $° - 3,95 - B0

137 " 94
Weyl's idea was to identify 9 with the electromagnetic potential. It
soon became apparent, however, that Weyl's theory could not be inter-
preted as a theory of electromagnetism, and the theory was abandoned.

The Kaluza-Klein theory generalises GR by increasing the number of
dimensions of spacetime to five, and identifying the extra components
of the metric as the electromagnetic potential. This idea does work out
successfully, but does not provide a unified theory in the true sensa.
Generalisations of the Kaluza-Klein theory are still actively being in-
vestigated as part of the present search for unification.

The Einstein-Schrddinger theory generalises GR by dropping the re-
quirement that 95 j shall be symmetric, the idea being that the addi-
tional 6 components might describe the electromagnetic fields. This
approach has now been comoletely abandoned. However, the comneoticn
rijk in the Einstein-Schrddinger theory was also asymmetric, and this
still remains a viable possibility, as we shall see.

In the early attempts at unification, the strong forces that bind
nuclei, and the weak forces governing decay processes, were unknown.
The present attempts at unification have to be more ambitious - one
would like to see gravitationa],-e]ectromagnetic, weak and strong inter-
actions all emerge from a single theory.

We can fllustrate what is meant by a 'gauge theory' by looking in-
to the simplest gauge theory, Maxwell's theory of electromagnetism.
Electromagnetism is described by a four-vector poteniial A, and the
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electormagnetic jields F are described by its curl:

Fij = aiAj - ajAT. ; (1}
Since the potential A occurs in Maxwell's equations only in the combi-

nation F, the equations are invariant under the gauge transformation

A, - A, + 3.a , (2)

where o is an arbitrary spacetime-dependent parameter. A deep insight
jnto the significance of this is provided by quantum mechanics (1925).
Observables are constructed from a wave function y and its conjugate w*
and are invariant under the phase transformation

v o~ el {3)

One can then argue that, since there is no a prioni way of comparing

the phases of | at two different points,physical laws should stiil be
invariant under such a transformation even if the parameter o is space-
time-dependent. This more general invariance can be achieved by intro-
ducing an auxiliary field A;, transforming according to (2), when
undergoes the transformation (3),and replacing the derivatives aiw in
the wave equation of U by the generalised derivatives

Bw - A (4)
The auxiliary fieid A is identified as the electromagnetic field, and
the modification (4) leads to minimal coupling between a charged field
and the photon field A.

According to Noether's theorem (1918}, invariance of a Lagrangian
theory under a transformation implies a conservation Law. For the
phase transformation (3), the acompanying conservation law is the con-
servation of electric charge, which can be written as a continuity
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aguation,

i
359 0, (5)
satisfied by the charge current. When the phase transformation is
gauged {i.e., made to depend on position in space and time), the current
becomes the sounce of the electromagnetic field:

3iF1J N (6)

This is an important feature of all gauge thegries. When a symmetry of
a Lagrangian theory is gauged, the conserved Noether currents associated
with the symmetry become the sources of the axuiliary fields ( gauge
potentials).

The gauge group of Maxwell's theory is the one-parameter Abelian
group U {1). VYang and Mills"(1954) applied the gauge principle to a
non-Abelian group, namely the 3-parameter group SuU(2) of isotopic spin.
Isotopic spin {nowadays cailed simply *isospin’) was invented by
Heisenberg® in 1932, to provide a theoretical understanding of the ob-
served charge independence of aucfear foxces. One observes that proton
and neutron have nearly the same mass,and that the farces that bind
protons and neutrons in a nucleus dec not appear to recognize any dis-
tinction between them; the strong interaction behaves as if proton and
neutron are two states of the same particle - the nucleon. A nucleon

wave function can be written

P =(§) . (7)

If the electromagnetic interaction (and the weak interaction) could be
vewitched off', then any linear combination of the two nucleon states
could be chosen and called a 'proton state'; the orthogonal state would
be a 'meutron state'. This would be purely a matter of conventicn in a
world with no means of making a distinction. Thus, physical laws app-
ertaining to the strong interaction should be invariant under
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v Sy (8)

where S is any unitary unimodular 2x2 matrix. We have a symmetry group
SU(2). The associated Noether conservation law is the censervation of
isetopic spin (which, of course, is violated by the electromagnetic
interaction. It is also violated by the weak interaction). Yang and
Mills argued that, in the world of the strong interaction, the choice
of convention whereby one of the indistinguishable states of the nucleon
is called 'proton', can be made independently at different points. Or,
in other words, the strong interactions should remain invariant under
(8) even when S is spacetime-dependent. To achieve this, they intro-
duce an auxiliary vector field B with transformation

B, » $B;STl+ (3;8)57! (9)

and replace derivatives ;v of the nucleon wave functions by the gen-
eralised derivatives

Dy = - B.y . (10)

Each component of Bi is a traceless Hermitian 2x2 matrix:

B, = by .3 (11)

where 1 represents Heinsenberg's three fsospin matrices . Equation
{10) gives the generalised derivative of an isospin 172 field. Other
fields that interact strongly belong to different representations of
the isospin SU(2); the pion field for instance is an jsospin-1 field.
In every case a generalised derivative is readily constructed. The B-
field is the gauge potentiaf for the isospin group SU{2). The gauge
fields

are defined by

[Di,Dj] = -F, (12)



246

and are found to be given by a generalised curl

F1.j = aiBj - ajBi - [Bi’Bj 1. (13)

They transform homogeneocusly,

N -1
Fij SFijS (14)

and satisfy an identity

Diij + Diji + DkFij =0 (15}

i
[Dk[DiDj]] = 0)}. The Lagrangian for the gauge potential B was chosen

(as a consequence of the Jacobi identity [D [DjDkJ] + [Dj[DkDi}] +

by Yang and Mills, by analegy with Maxwell's theory, to be

-1/8 trace F. F1d = £, pl

and the field equations are then
. .
DiF b . {16)

where 11 = 11.1 is the fsospin curnent. It satisfies

D.Ii =0 (17)

jnstead of a true continuity equation. This is because 1" is the cur-
rent that carries the isospin of all fields cthenr than B, The isaspin
of B itself has been left out. To get a true continuity equation and
hence a conservation law for isospin, the isospin current of B has to
be included. This can be done as follows. Equation {1g) is

a,f = 1) s FY)

which Teads to
35(17 + [B;,F7) = 0
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The term [Bi,Fij] is the isospin current of B. This extra complication
is characteristic of a gauge theory of & non-Abefian group. In the
Abelian gauge theory of electromagnetism, photons couple to all parti-
cles that carry electric charge, but do not themselves carry electric
charge; they are not self-interacting and so their field equations are
linear. In the non-Abelian theory of Yang and Mills, the B-guanta couple
to alt particles that carry isospin. The B-guanta themsefves carry
isospin (B is an isospin-1 field). They are therefore self interacting
and so their field equations are wonfinean. The nonlinearity enters

the equations through the final term in (13},

The Yang-Mills theory implied the existance of B-guanta, mesons
with spin-1 and isospin-1 {three charge states). No such particles
were known when the theory was proposed. The p-mesons which have spin-
1 and isospin-1, might be identified with the Yang-Mills B quanta.
However, the importance of the Yang-Mills paper does not reside in this
prediction. The work of Yang and Mills is of historic importance be-
cause it revealed a general principle - the concept of gauging a non-
Abelian symmetny ghoup. Applications of this principle have been re-
markably successful. Indeed, in recent years, non-Abelian gauge theo-
ries have become a dominant theme in the search for an understanding of
the nature of fundamental physical forces.

The Salam-Weinberg theory® of 1967 successfully unified the weak
and electromagnetic interactions. It is a gauge theory based on a
group SU(2) ('weak isospin') ®  U{1){'weak hypercharge'), which em-
pleys the principle of spontaneous symmetry breaking (SSB). In a tra-
ditional Lagrangian field theory, all the fields are zerp in the ‘vac-
uum state' or 'ground state' (minimum energy state). But Lagrangian
theories are possible in which there are fields that have nonvanishing
components, in the vacuum state. These special fields are the Higgs
fields. When this happens,the symmetry of the physics is less than the
symmetry of the lLagrangian, since the symmetry transformations have to
respect the structure of the peculiar vacuum. This phenomenon is spon-
taneous symmetry breaking. There is a theorem, due to Goldstone?, that
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whenever a symmetry is spontaneously broken in this way, some spinless
massiess fields will be present. This seemed to rule out 538 in nature,
bacause nature does not produce any spinless massless fundamental par-
ticles. This difficulty was eliminated by Higg's discovery® that, if
the symmetry that gets spontaneously broken is a gauge symmetry, spin-
1es§'mass1ess 1Goldstone bosons' would nat be present. Tustead, the
particles would acquire mass {they cannot have a mass term in the Lag-
rangian without spoiling the gauge invariance). Thus the 'Higgs mecha-
nism' kills two birds with one stone: it eliminates unwanted Goldstone
fields from theories with SSB, and it explains how gauge guanta can
have a mass. In the Salam-Weinberg theory, the sU(2)® U{1) gauge sym-
metry of the Lagrangian is spontaneously broken,so that the exact gauge
symmetry of the physics is only a U(1}, with massless gauge potential
A. This is electromagnetism. The other gauge potentials W and Z be-
come massive through the Higgs mechanism. They are the intermediate
bosons of the weak interaction. The charged W-bosons mediate the V-A
theory of Marshak and Sudarshan?. The Salam-Weinberg theory predicts
an approximate mass for them, and they have now been detected experi-
mentally. The neutral Z-bosons couple to neutral weak currents, and
experimental evidence indicates that ihis aspect of the weak inter-
actions appears to behave as expected according to the theory. Thus,
the gauge theory of Salam and Weinberg is a remarkably successful
theory.

Some aspects of the strong interactions appear to be well descri-
bed by quantam chromodynamics {QCD), which is also a gauge theory.
According te QCD, three quark fields (red, yellow and blTue) are coupled
to 'gluens', the massless gauge quanta of a symmetry group Su(a)colour'

The so-called grand unified theories!?(GUT's) are attempts to
unify these two successful theories, the Salam-Weinberg theory and the
QCD approach to strong interactions, thereby unifying the electromagne-
tic, the weak and the strong interactions. The idea is the following:
Incorporate the Salam-Weinberg SU(2) @ U(1) and the SU(3) co1our OF
QCD in a bigger group G { which should be semi-simple 50 that the cou-
pling of its gauge potentials to other fields needs only one coupling
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constant). Then make a gauge theary of G, incorporating various SSB
mechanisms. Then hope that the resulting theory will correctly des-
cribe experimental data.

0f course, the GUT approach to unification is not ambitious enough,
if the aim is to unify aft the fundamental forces of nature. It leaves
out the gravitational interaction completely. It now appears extremely
likely that the long-sought unified theory of all interactions (if such
is possible) will be a gauge theory. S0 a necessary ingredient is a
gauge theory of gravity.

Is Einstein's gravitational theory (GR) a gauge theory? It cer-
tainly has some intriguing resemblances to the theory of Yang and Mills.
The role of the connection Tijk in the construction of covariant der-
jvatives is analogous to the role of Bi in constructing the generalised
derivative {10) and the inhomogenenus trarsformation law of the con-
nection under general coordinate transformations (GCT's) corresponds to
the inhomogeneous transformation Taw {9). Consider also the resemblance
between {13) and the structure of the curvature tensor:

Rijk = °iljk - ajrikl - T 1kmrjm] * ijmriml (18)

The analogue of the identity (15).in GR, is of course the Bianchi
identity. In fact, if the traceless Hermitian 2x2 matrices B, are re-
placed by real 4x4 matrices, the resemblances mentioned above are com-
plete. So GR looks something like a gauge theory of GL(4,R}. In this
interpretation, the spacetime-dependent GL{4,R) matrices would be the

.
ax_ (19)
axJ

that appears in the transformation laws of vectors and tensors under a
6CT. However, a gauged GL(4,R) should have 16 spacetime-dependent
parameters. Because of
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21'i Zli
8 ;,AE = 3 % < (20)
3x" 3x 3% 3X

the GCT group has onfy four. This is most easily seen by Jooking at an
infinitesimal GCT,

which has just four spacetime-dependent purameters 51 . S0 GR s not
a gauge theory of GL(4,R). Moreaver,in a true gauge theory, the gauge
potential should be & genuine dynamical field in its own right. The

connection in GR is not; it is constructed from the metric:
k _ ; k
Gy byt (21)

50 we conclude that GR is not a gauge theory of GL(4,R), though it res-
embles one to some extent. The question that then arises is: qs it
possible to construct a true gauge theory that will describe gravita-
tional interactions, and that will pass the celebrated 'three tests'?

It is possible to formulate GR in terms of a fefiad - a set of
four orthonormal fields eui (here, the Latin index is the coordinate
based index and the Greek index labels the four vectors}. The inverse
of the matrix of components will be written eia. Orthonormality means
that

i
€0 %8795 T Mg {22)

where "ya is the Hinkowski metric of special relativity. Now, if you
change the tetrad,

el o aBe i (23)
the matrix A will be a Larentz matrix, so as tg preserve the grthonor-

mality. It can be a spacetime-dependent matrix, so we have the begin-
ings of a gauge theory for the Lorentz group,
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If all the physical fields are vectors and tensors, the tetrad app-
roach is only a reformulation of GR and says nothing new. However, to
investigate the behaviour of fermions in an Einstein gravitational
field, we have to introduce spinor fields, and then the tetrad formu-
lation of GR become indispensible. Under a change of tetrad (23), a

spinor field % transforms according to
$ o> S (24)
where S is determined (up to 2 sign) by |S| = 1 and

(25)

We have a matrix group SL{2,C) with spacetime-dependent parameters. In-
variance of the Dirac equation is maintained by replacing aiw by

Dy = By - Ty (26)

where the Fock-Tvanesko'' coefficients r; transform according to

r.oo»osesthow (a,8)57L (27)
i i i
They are 4%4 matrices of the form
_ afB -1
T1 = l/ar.i OGB 3 UO‘-B = /Z[YQ’YBJ (28)

{c.f. {11)). The components rias are spen coeffictents. A1l this was
written down by Fock and [vanenke in 1929, and it looks very much like
a gauge theory of SL{2,C). However, these authors were not trying te
construct a new theory gr to generalise GR, they wished only to under-
stand how Dirac's {then new) theory of the electron could be reconciled
with the curved spacetime of Einsteinian gravity, so that the behaviour
of an electron in a gravitational field could be understood. If you
have & tetrad e.” and a set of spin coefficients riaB you can build

a connection Fij

a 4, o Bhoa kK, o 29
358 e Tig Ty’ - (29)
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At this point, contact with GR is made by insisting that

k . (k
oy 4t (30)
The Fock-Ivanenko coefficients are thus not independent dynamical fields.
They are built out of the tetrad and its derivatives.

Schrodinger?? (1932) wrote

éij = 93Ty - 95Ty - [ri,rj] (31)

(c.f.(13)!) and pointed out that, on account of (30),
o.. = 4R, OB (32)

where the coefficients are the components of the Riemann tensor con-
structed from the Christoffel symbols. In the same paper, he also
pointed out that you could incorporate electromagnetism by adding 1Ai
to the definition of T, ; then 1F1j gets added to (32).

With hindsight, it is possible to see that the constraint (30) was
a btunder. Utiyama {19568} and Sciama (1962) presented a true gauge
theory of SL{2,C}'3. Their approach resembles the earlier work of Fock
and Ivanenko and Schrodinger, but the constraint {30) is abandoned. In-
stead, the spin coefficients FiﬂB

field {SL{2,C) gauge potentials}. These and the tetrad components e1.Ol

are components of a true dynamical

are the quantities to be varied in the Lagrangian to get the Euler-
Lagrange equations. The connection defined through (29) satisfies

1 1
%95 “Tki 9y Teg 91 = 9 (33)

as in Einstein's theory {the connection is 'metric compatible'), but it
is net {in general) symmetric. We have a spacetime with tfonsdon.
k k k

[ IR M (34)
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The theory can be refermulated in terms of gij and T k

Iy
to be the same as the earlier Einstein-Cantan theory'®.

and is then seen

Let us at this stage reiterate the Yang-Mills recipe for producing
a gauge theory. Take a symmetry group of a Lagrangian field theory and
require that the invariance shall still hold even when the parameters
of the symmetry group are made spacetime-dependent. To achieve this,
introduce auxiliary fields {gauge potentials) and modify derivatives
of all other fields that respond to the symmetry transformations. Then
construct an invariant Lagrangian for the gauge potentials. Standard
Yang-Mills-type theories are based on inteanal symmetry groups, like
isospin SU{2), which act on components of fields but have to effect on
the points of spacetime. Now, there is symmetry group of fundamental
importance that does act on the points of spacetime: the l0-parameter
Poincaré group of Lorentz rotations and translations in the Minkowski
space of special relativity. Kibble (1971}applied the Yang-Mills pre-
scription to this spacetime symmetry'®. The theory that he obtained is
jdentical to that given by Sciama; it is now known as the Kibble-5ciama
theory, or Einstein-Cartan-Kibble-Sciama theory (ECKS}.

The action of the Poincaré group on Minkowski space and on the
components of a field 1§ can be written

xl[). = XBA-I o

A - a® {35)

E{x') = S(Aw(x), (36)

where S is a representation of the Lorentz subgroup. The Noether cur-
rents for this symmetry are the cancnical energy-momentum current aa’
and the canonical angular momentum current

i i i

g X8t Tup

(T is the current that carries .nfrinsic angular momentum, or spin).

i
oB
Conservation of energy,momentum and angular momentum are
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(37)
il
Ulap = s - a4

In a gauge theory of the Poincare group, these are the currents that
one expects to see as sowwces of the gauge potentials. The canonical
energymomentum tensor is ngt in general symmetric. The symmetrised
energy-momentum tensor of Belinfante is

LA O 38)

. ij _ .3 . ij _

{its symmetry T ° = 7 and conservation law aiT = 0 both feliow from
the Noether identities (37)). The energy momentum tensor of GR that
acts as a source for the gravitatignal field {the right-hand side of
Einstein's equations } is just the straightforward covariant generali-
sation of Belinfante's tensori®.

When the Poincaré group is gauged by making the parameters a® and
Aa spacetime dependent, (35) becomes just a general coondinate trans-
formation (36) becomes a combination of this GCT with a change of fetrad
{23). The gauge potentials of the Poincaré gauge theory consist of a

8

tetrad eiDt (gauge potentials for the translational subgroup) and a set
of spin coefficients FiaB {gauge potentials for the Lcrentz subgroup).
S0, in Kibble's approach, the tetrad appears as an integral part of the
Yang-Mills principle.

The gauge-potential ¢f the Paincare group can be combined in a

single quantity

_ v L b
Lpo= ey G+ M6 {39)
where G, and GaB = 'GBa are generators of the Lie algebra of the

Poincaré group (c.f.(11)). They satisfy

[Ga,G ] = 0

B
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(Gyp> Gys) = MayBas = MoyBas ¥ Mas®By™ Maalay

[Ga ’ GBY 1= naSGT - ”ayGB (40)
One can then work out the compenents of the gauge fields
= & 1. G'B = - -
Fis = Fig By * 5 Gy BT - 33Ty = [Tys rsl. (41)

One finds that the transfationak gauge §ietd is just the Zorsion of the
connection rijk given by (29), and that the rofationaf gauge §iefd 1is
the curvature of this connection:

1 1 1 m 1 m 1
Dok Tim * Uik Tim

(42)
The Lagrangian for the gauge potentials was chosen by both Kibble

and Sciama to be the strajghtforward generalisation of Einstein's Lag-
rangian: they chose

1 j, i oB
” ee, es Fij (43)
where
e = le*l = V-g.

Varying e.* and ri“B, they obtained field equations

Fiy - % gijF = By (44)
Figk * Fi%5c - P9k © <Tisk (45)
) . .
(Fij = Fiij »F = Fi's Fy = Fygl). Observe that the sounces are the

Noethen cunnents, as expected. Equations (44) Jook like Einstein's
equations, but here the Ricci tensor and the energy-momentum tensor
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are not in general symmetric. FEquation (4%} is wot a differential
equation, so in this theory the torsion cannot propagate thraugh space
it is nonzero only in the presence of matter with spin. In fact, if
there is no intrinsic spin, the torsion vanishes. In caonjunction with
(33) this implies that the connection is, in that case, just the Christ-
offel connection, Moreover, if there is no intrinsic spin the canoni-
cal energy momentum tensor is the symmetric Bélinfante tensor. Thus the
theory is identical to Einstein's thegry except in regions where there
is matter with intrinsic spin. Moreover, one can through (45) express
torsion in terms of the spin current, and substitute spin for torsion

in the Lagrangian. It then turns out that the theory is still identical
to Einstein's theory but with extra small terms representing spin-spin
coupling.

Heh1!? has proposed that the Lagrangian chosen by Sciama and Kibble
is not the correct one, and that the Lagrangian of the true Poincare
gauge theory shou]q be a quadratic formed from the gauge fields (analo-
gous to the laFUF1J of Maxwell'stheory). Poincare gauge thecries of
this kind have been investigated extensively by Hehl and his co-workers
in recent years, The curvature-squared terms are believed tc describe
some aspects of the strong interactions, the classical gravitational in-
teraction coming from the torsion-squared part of the Lagrangian, the
most general form of which is

ijk ikj i
e(ch'iij + CZF‘iij + C3F'iF ). (46)

Let us consider just those solutions for which FiaB =0 . Then
F..% = g and
1)

Fij = et - e (47)

We have a space with vanishing curvature but ponvanishing torsion. Such
spaces were called by Einstein‘spaces of distant parallelism'. The 3-
parameter family of Lagrangian densities (46) provides theories that can
be regarded as gauge ftheonies of the trnanslational subgroup of the
Poincare group(a 4-parameter Abelian group). One of fhese is Einsfein's



theony; from (22) and (47) one can obtain an identity

v-gR = e(uF .kFijk - %F--kFikj - FiFi) +D (48)

ij iJ
where D is a divergence and so does not affect the field equations. In
fact this is the combination that you get uniquely if you insist that
the translational gauge Lagrangian be invariant under tetrad changes
(23)'®. However, other choices of the parameters in (46) also lead to
viable gravjtationa] theories, in that the resulting theory possesses a
Schwarzschild solution and is not distinguishable, observaticnally, from
Einstein's theory. The Poincare gauge theory favoured by Hehl, and
investigated extensively by him and his co-workers, is based on the com-
bination
e(Fiijijk - ZFiFi) . (49)

Variations on the theme that we have presented are numerous. In-
stead of the action of the Poincare group on Minkowski space, one can
consider the action of the de $itter group on de Sitter space, and gauge
that 29721 , (QOne can extend the Poincare action on Minkowski space
to the action of the 16-parameter affine group, and gauge that®®. Or
one might construct a gauge thecry of the 15-parameter conformal group??
{transformations on Minkowski space that preserve light cones). Since
these latter two groups are not invariance groups for physical laws,
their gauge theories should be supplemented by SSB. Groups that urite
spacetime symmetry and internal symmetry in a non-trivial way can be ex-
plored®*. Gauge theories of internal symmetries have spin-1 gauge quanta.
Gauge theories of spacetime symmetries also have spin-2 gauge quanta
{gravitons) and incorporate gravitational effects.

In the search for the ultimate unified theory that would incorpo-
rate all the fundamental forces of nature, the contribution to be made
by investigating gauge theories of spacetime symmetries appears indis-

pensible.
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