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Poincaré gauge theory from self-coupling
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Abstract. Poincaré gauge theory is derived from a linear theory by the method suggested by
Gupta for deriving Einstein’s general relativity from the linear theory of a spin-2 field. Non-
linearity is introduced by requiring that a set of tensor fields be coupled to the Noether currents
of the Poincaré group (energy-momentum and spin).
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1. Introduction

It was pointed out by Gupta (1952) that Einstein’s gravitational theory is obtainable
from the linear theory of a massless spin-2 field by an iterative process. If the symmetric

-(Belinfante) energy-momentum tensor of matter is taken as the source term in the linear

field equations of a massless spin-2 field, the resulting equations are inconsistent with
energy-momentum conservation, because the energy-momentum of the spin-2 field
itself has not been included in the source. When it is included, the resulting nonlinear
spin-2 equations are still not consistent with the conservation law, because the self-
coupling term that has been introduced contributes to energy-momentum, and this
portion of the energy-momentum tensor should be included in the source. Thus, for
consistency one has to introduce an infinite sequence of self-coupling terms. This
iterative procedure converges, and the non-linear spin-2 theory that it converges to is
Einstein’s gravitational theory. The reader is referred to the references given by Deser
(1970) for details. - : v

By starting from the first order form of the Lagrangian of the linear massless spin-2
theory, Deser (1970) was able to obtain Einstein’s theory immediately by coupling the
field to its own symmetric energy-momentum tensor. The infinite sequence described
above did not arise. Deser applied the same principle to a set of massless spin-1 fields,
the (first order) Lagrangian of which is invariant under.the global action of a group G
that transforms the set linearly according to the co-adjoint representation. If the
Noether currents associated with this symmetry are taken as the sources of the spin-1
fields, the resulting nonlinear theory is the Yang-Mills theory of a gauge group G.
Observe that this method of deriving Yang-Mills theory does not invoke the principle
of gauge invariance. Instead, it relies on the idea of self-coupling. Gauge invariance
arises spontaneously as a property of the resulting non-linear theory.

The aim of the present paper is to derive the Poincaré gauge theories (e.g. the ECKS
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theory or the Poincaré gauge theory of Hehl (1978)) by employing the method of Gupta
and Deser.

In § 2 we introduce a class of first order Lagrangians for vector fields. We discuss the
energy-momentum and spin tensors of the resulting linear theories and derive the
gauge theory of a group G by introducing self-coupling through coupling to Noether
currents. In § 3 the linear theories are generalised for tensor fields rather than vector
fields, and we show that Poincaré gauge theories result when the tensor fields are
coupled to energy-momentum and spin—the Noether currents of the Poincaré group.

2. Vector theories

Let % be the Lagrangian for a special-relativistic theory of a vector field 4, which
contains derivatives only to first order, and only in the combination 8;4;— ;4. Define

In terms of a Cartesian coordinate system, the action of an infinitesimal Poincaré
transformation on Minkowski space is

xtoxi—E E=dtxin), oV=-ow’

The corresponding change in the components of A is

5A_,=fi6,Aj+0)j’Ai. (2)

& is required to be invariant. The Noether currents associated with the Poincaré
invariance are contained in

O'=HUOA;—EL + 0, %7 _ (3)
The Noether conservation laws are

0,60'=0. . 4
The tensor & ¥ satisfies &= — " and is linear in &,

Zi=q JiEk, (5)

but is otherwise arbitrary. An energy-momentum tensor #', and a spin tensor 7' jx are
obtained as the coefficients of the Poincaré group parameters, in 6"

0'=0" L+ 3170t = 010" + 3(cy — 204 x) 0, (6)
In terms of these tensors, the Noether identity (4) is
aieik =0, i @

aiTijk'—‘*ekj“ejk- ‘ (8)
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The explicit expressions for the energy-momentum and spin tensors are
O =H0A;— 6L L +0; X7, : 9)
= WA~ HA AT =Ty (10)

There is an arbitrariness in the definitions, corresponding to the freedom to choose Z it
(see Hehl, 1976). The canonical choice is & =0, We shall adopt a different choice.
Observe that the Lagrangian is invariant under A;— A4;+0;4 because we have
stipulated that the derivative occurs only as a curl. If we insist that 6 be invariant under
this transformation, we are led to the choice

T = A4, (11)

The tensors (9) and.(10) are then
0 = H U0 A— O H A0, (12)
=0, W)
The Lagrangians that we shall be employing are generalisatibns of the Lagrangian
L =HY0;A;—3F;)+9(F), (14)
in which # 9(= — # ) and F,;(= — F}) are auxiliary fields, and ¢ is a Lorentz scalar

constructed from the F;; (not containing derivatives). The Euler-Lagrange equations
(obtained by varying F and A, respectively) are ‘

= 39/3F,, (6
8,9=0. (17)

The energy-momentum tensor (12) is, in this case, simply
0= #IF,;—5L9. (18)

Now let A be the components of a set of vector fields which transform among
themselves according to the co-adjoint representation of a global symmetry group G:

SAY=gbASc,”, (19)

where c,,” are the structure constants of G and &” are the infinitesimal parameters. The
associated Noether currents are

f 51= ‘;f ich jb cabc (20)

(where #°Y,=0.2/00,A = — # %) We shall take the Lagrangian for the vector fields
A to be of the form

L=H"(0,A]—3F )+ 9(F), 03y
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which leads to the Euler-Lagrange equations

Fif=0,Af—3,Af, | @@
AU, =0%/0F | (23)
0,44, =0., : (24)

We now wish to introduce the Noether current into (24) as a source term. The total
Noether current is #%+ ¢,,, where #,/, is the Noether current of matter fields. The
desired source term appears in (24) if the Lagrangian is modified by introducing the
coupling term

AL It A" I (25)

(the factor $ is necessary because ¢/, already contains 4, linearly, so the first term in
(25)is quadratic in A). We have absorbed the coupling constant in the definition of the
fields 4. The modified Euler-Lagrange equations are then

Fija = alAJa - 6]-Aia— A?Aj:cbca, (26)
%ija=ag/5FUa N (27)
ai%ija:" _CabcAib'%ijc+ fMia' (28)

Observe that the introduction of the self-coupling term does not affect the form (20) of
the Noether current of the fields 4, so no further iteration is required (the contribution

of the self-coupling term to the current is taken care of implicitly, through the extra term
that has appeared in F,/*, (26)).

ij o
We now see that the self-coupling has converted the original linear theory to a gauge
theory of the group G. Equation (28) can be recast in the manifestly gauge covariant
form

Dixijazai'}?ija+CabcAib‘}fijc= fMja' (29)
Using (12) to work out 6} for the gauge ,ﬁelvds, we find
Oy=H"Y,Ff—6,9+ Il A (30)

The final term is the contribution from the coupling to matter. The remaining tensor is
formally a sum of terms like the tensor (18) of the linear theory, the extra term in F,;/
gives rise implicitly to a contribution to energy-momentum from the self-coupling.

3. The tensor theories

Let p be a representation of the Lorentz group, with generators G;j=—Gj;, and
consider a set A of fields with components that transform, under an infinitesimal
Poincaré transformation x'— x'—¢&', &'=4d'+x;0% 0= —w’, according to
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That is, 4 is a collection of tensors (or, more generally, spin-tensors). One covariant
vector index has been indicated explicitly, while the remaining indices are implicit in the
matrix notation.

Let % be a Lagrangian for A, containing derivatives only to first order and only in
the combination 6;4;—0;4;. Define #=0.%/9;A;. The Poincaré invariance of &
implies the Noether identity

0;0'=0 ' (32)
where |

Oi= A SA,—EL +0; %" (33)
(the dot denotes contraction over the implicit indices). We choose

T, = A, - (34)
in analogy with (11) and find the energy-momentum and spin tensors

0= - 3,4, —3,(H A)— 5,2, @3)

Tikl= ”ij' leAj’ v (36)

- satisfying (7) and (8).

There is an alternative method for obtaining the canonical energy-momentum and
spin tensors, which is analogous to the method of obtaining the symmetrised
(Belinfante) energy-momentum tensor by going over to a curvilinear coordinate system

-and working out the functional derivative of the Lagrangian density with respect to the

metric. Let Ly (W, 0;)) be a Lagrangian for a field y, in Minkowski space. Let f,; denote
the generators of the representation of the Lorentz group to which ¥ belongs. Intro-
duce an orthonormal tetrad e (i is a coordinate-based (holonomic) index and
« is an anholonomic index labelling the four vectors). We shall write e, for the elements
of the matrix inverse to the matrix of components e;*, and we shall write e for the
determinant e= |e#|. In addition, introduce a set of spin coefficients I'*.One can now
write the theory in a form that is covariant under general coordinate transformations as
well as under Lorentz rotations of the tetrad. We simply replace L by the density

gM(d/: .Dil//7 eiaa riaﬂ) = eLM(l/I’ Da¢) | (37)

where ‘
Dy =03 — 3T g, | - (38)
D =e, Dy (39)

Note that, in this context, there is no geometrical or dynamical significance to the tetrad
and spin coefficients. They are introduced purely as a device for computing the energy-
momentum and spin tensors. It is now not difficult to deduce that

0% %y

et 98 o)
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and that
0% M 0% M 41)
01 i"‘ﬂ 56,-1& f“ﬂ ‘/j (

These expressions are covariant generalisations of the canonical energy-momentum
tensor and canonical spin tensor for the field and reduce to these quantities when we
revert to the Cartesian coordinate system by setting e,*= 6%, I';*# =0.

We shall apply the above trick to the set of tensor fields 4, but with this difference: the
explicit covariant vector index on A; will be kept holonomic.

The transformation laws for the tetrad components and spin coefficients are

53?“—"éjajeia'*‘ejaaiéj—'eiygyas (42)
ST P = EI0, 0+ T #80,E5 T e «— T g P+ 0,6%, @)

The three transformation laws (31), (42) and (43) can be reformulated in terms of the
parameters

laﬁ =8a/i + gir‘iaﬂ,

Er=Elep,
We find
5A=¢V, A+ AD &+ 1A, A=4"G,,, (44)
oef=8"Q, + D& — A2, (45)
o =&Q,*+ D1, (46)
where |
Qf=Def—Djef =0ef—djef —e T} +e,P (47)
and | ‘
Quf =0T -0, -T, T,/ +T W Te? (48)

are the torsion and curvature associated with the tetrad and spin coefﬁcients, and V,
denotes the covariant derivative constructed from the anholonomic connection r,f
and the holonomic connection I';*=TI";*=(0,e + e, i8)e;

le_]= alA]—TﬂkAk—%ri“ﬁGaﬂAJ

(note the index order in the second term).
The fact that % is invariant under spacetime-dependent tetrad rotations and a scalar
density of weight 1 under general coordinate transformations implies the ideritity”

Dy(H#Y-64;—EL)=X} e +33,,0T % - (49)

Wiere

0, 0L

T,= T Y= e ‘ (50)




Poincaré gauge theory from self-coupling 365

Substituting the variations (44), (45) and (46) into the identity (49) and equating
coefficients of D;&* and\DiA""j gives

S = V,4,—D{(HV- A)—e, 2, (51)
S, = A GyA,, | (52)

These are clearly the covariant generalisations of the expressions (35) and (36) for
energy-momentum and spin, and reduce to them when we revert to the Cartesian
system by setting e; =07, ri“ﬂ;o. Equating coefficients of ¢* and A*# gives

Dizi(z=zj/iQajﬂ +%.Zjﬁygajﬂy: (53)
Dizimﬂ=2/}m—zaﬂ. (54)

These reduce to the Noether identities (7) and (8) when we revert to the Cartesian
system. ' ‘
Now consider the special-relativistic theory given by the Lagrangian

IL”=9’60“'(aiAj—%Fij)'*‘(g(F)‘*‘yM(lp, o) - (55)

in which the A-fields consists of a tensor A% and a tensor A% = —'A,f"’. That is, written

more explicitly,

= HI0,AL —AF [ +AA T fOA —Fif) + (F)+ Lo, 0)). (56)

%\ is a matter Lagrangian. The energy momentum tensor and the spin tensor for the

A-fields are
0, =H" 0, A s +1# "fa,,,akA j“” —0(H U AZ+5H ”aﬁAk"”) —-6i¥

=W F A iH T F P81, (57)
Ty = H A= A Ayt H Vg Ay — H Vs Ay (58)

At this stage, there is no distinction between Latin and Greek indices.

We wish to add coupling terms to (55) so that, in the resulting theory, total energy
momentum and total spin will appear as sources on the right-hand sides of the Euler-
Lagrange equations 9,2, =0 and 8,#° ", =0.

First, consider the coupling to energy-momentum. Introduce a tetrad ef and go to a
curvilinear coordinate system. Then % becomes a density under general coordinate
transformations. In this process, the Greek indices in (56) are to be treated as
anholonomic indices, and the matter fields are also treated as anholonomic. Observe
that ¢ will appear only in 4+ %), The other terms become generally covariant
densities simply by identifying the # ¥ as tensor densities. The total energy-momentum
tensor density is — 0.%/de?. So to begin with we introduce the coupling term A§0.%/de;.
That is, we replace Z by & + A70%/de;. This changes the energy-momentum density
to —a(ZL + A80.L/0ef)/0ef. To include the extra energy momentum in the source we
need another coupling term 347492 /dedef (the factor 7 is needed because
this term is quadratic in 4,%). Again, the energy-momentum tensor density changes and
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we have to introduce yet another coupling term, and so on. F inally, we conclude that
the necessary change is brought about by replacing % by

0¥ > *L
A TAPAP ———+LAPA LA — 59
A i A g A A s 9)
In other words, we have to replace e, wherever it occurs in %2, by
Bi1=eia+Aia. (60)

We now use the letter % to denote the final form of the Lagrangian density, so that the
total energy-momentum density is now —0.%/def= — 0% /0B, and the Euler- .
Lagrange equation obtained from varying B% becomes 3,2, = 0.#/0B/, as required.

Now turn to the problem of coupling to spin. Introduce spin coefficients I’ 2 and
replace ;B;* by 9,B*+ BT %, 3,A* by 0,4,* + AT+ AT ,F, and 04 by 04
=30 f4¥ (f, being the generators for the representation of the Lorentz group to
which y belongs). The total spin-tensor density is now — 0F/oT' . Let £, be the terms
in & that do not contain (undifferentiated) 4,* and let <, denote the term linear in

A (namely #Y, ;4T ,.%). Then the appropriate initial coupling term is

1 0¥ /1 0%
ZAMBTO0 Ny 2 g
<2Al ariaﬂ) +2(2A1 ariaﬁ)' (61)

(The factors 4 attached to 4 are simply included to avoid double counting in the
summation over the stewsymmetric index pair «f. The factor % outside the bracket in
the second term is included because this term is quadratic in AP Now, if #,, contains
' only linearly, the above coupling scheme will not contain I';*# and therefore will not
contribute explicitly to the total spin density. The process then terminates. If %,
contains boson fields with spin greater than zero, it may be quadratic in I';*#. In which
case (28) does contribute to spin density and we have to add another coupling term

I /1 r*y 1/1 0>
g8 498 0 {2408 4 v6 1
2[(4*“ A an“ﬂar;ﬁ)%( AZ4, ar;ﬂar;ﬂ)]’ 2

and the iterative process terminates here. In any case, when the process of adding on
these spin couplings has terminated the effect has been to replace I'* by ' + A" in
ZLoand by ' +34 in 2,. Again, retaining the symbol . to denote the final form of
the Lagrangian density, one can easily verify that the total spin density —8.%/0T # is
the same as —0.%/0A/, in the limit ;% =0. The spin-couplings terms that we have
introduced contribute to energy-momentum but since e, has already been replaced by
Bj* in the expressions %, and %, before we began to construct the spin coupling, this
extra energy-momentum is taken care of, ‘

We obtain the final form for the generalisation of (56) by setting ¢,*=62, ' =0. We
get '

L =H ij,,(aiBj“ + B A, —3F )
+3H Vg0 A + AP A —LF )+ %(F, B)
+ LY, 9y, BE, AS), (63)
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The Euler-Lagrange equations from variation of # are
F,/=0,Bf—0;B/—BA;/ +B AL, (64)
P = 0,40 — 0,40 — At Ayl + A Ay (65)
From the variation of F, we get
HY,=0%/0F ", (66)
H,,=08%/0F . (67)
Finally, variation of B and A gives
0,41, = 6./0BF, (69)
0, H U y=0L0A. (69)

It would be obtuse to continue to regard (61) as the Lagrangian of a theory in
Minkowski space. & is now a scalar density under general coordinate transformations
and invariant under spacetime-dependent tetrad rotations, provided we interpret the
# as tensor densities, B as components of a tetrad, and 4;% as a set of spin
coefficients. It is then natural to take the metric to be the one for which the tetrad B is
orthonormal,

gij= BiaBjﬁnaﬂ ' (70)

and to take the holonomic connection to be the one associated with the anholonomic
connection A4, namely '

L)

T,*=(8,B+ B 4B, | (71)

We are then in a U,. The tensors F;;* and F i*, (64) and (65), are its torsion and
curvature. We shall use B/* and its inverse B,/ to convert between Latin and Greek
indices in the usual way, and shall denote the covariant derivative for anholonomic
field components by D;. '

‘The total energy-momentum tensor density —0.%/0B;* appearing as the source term

~in (68) is given by

A% g 0%,
— — A Bypii 4 7 LM
T R ST TR T T

(72)
The first term represents the energy-momentum contributed by the coupling to spin.
The second term is given by . :

0
0B/

= HUFf +5H 0 Fo " — B (73)

(a straightforward generalisation of (57)), and

0%y _ 0Ly
Br 30y

Da‘//—BaigM:‘BMia (74)
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is the canonical energyémomentum density of matter. The total spin density occurring
as the source in (69) is made up of the spin of the B and A fields and the spin of the
matter:

0L . . ” i ;
T 0AE =H"B— HH By + H "pyA e’ — H Ay’ +Tnaps (75)
. OL
T ap = gﬁﬂpd’ (76)

We are now in a position to write the field equations (68) and (69) in a manifestly
covariant form:

Di =%ﬂ ija = ai'yfija: - Aiaﬂ ‘yf ij/} = ("@jac - eMja: : (77)
D= 0 g — Aid Yy~ Ay H Uya=— &lup— Taraps (78)
where
(g?ia= %ijﬂFajﬂ+§_t%ijﬂyFajﬂ)’_Baig’ (79)
& iacﬁ =H iﬁa - ia[h (80)

The equations (77) and (78) are the Euler-Lagrange equations of a Poincaré gauge
theory, in the Maxwellian form first given by Hehl (1978) Poincaré gauge theory is
usually arrived at from a Lagrangian density of the form

‘(g(Fijas Fijaﬂi Bia)+$M(wa Diwa Bia) (81)
with (64) and (65) regarded as definitions.
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