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The properties of the manifold of 4 Lie group G, fibered by the cosets of a sub-
group H, are exploited to obtain a geometrical description of gauge theorics in
space-time G/H. Gauge potentials and matter fields are pullbacks of equivariant
fields on G. Qur concept of a connection is more restricled than that in the
similar scheme of Ne'eman and Regge. so that its degrees of freedom are just
those of a set of gauge potentials for G, on G/H, with no redundant com-
ponents. The “translational” gauge potentials give rise in a natural way to a
nonsingular tetrad on G/H. The underlying group G to be gauged is the group
G of left translations on the manifold G and is associated with a “trivial” con-
nection, namely the Maurer—Cartan form. Gauge transformations are all those
diffeornorphisms on ¢ that preserve the fiber-bundle structure.

1. INTRODUCTION

The language of fiber bundies provides very powerful geometrical methods
of dealing with Yang-Mills theories {gauge theories) We refer the reader
to the review articles of Daniel and Viallet [1] and of Eguchi, Gilkey, and
Hanson [2]. In the “conventional” approach to the {iber-bundle descrip-
tion of the gauge theory of an internal symmetry group G, The Yang-Mills
potential on space-time M is interpreted as the pullback (from a section) of
a connection I-form on the principal fiber bundle P(M, G). Gauge transfor-
mations are interpreted as changes of section. This conventional approach
leads to complications and conceptual difficulties when extended to
describe a gauge theory of a space-time symmetry group [3,4]. It requires
the introduction of additional structures, such as affine frames [4, 5] in the
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case of Poincaré and affine gauge theories and second-order frames in the
case of conformal gauge theories [6]. A more serious flaw is that the iden-
tification of the translational gauge potential with a tetrad on M, which is
perfectly natural and desirable in, for example, Poincaré gauge theory,
loses its validity in the conventional fiber-bundle description {3,4]. This
indicates that the conventional approach to the fiber bundle description of
a gauge theory is inapproriate if the underlying group acts on space-time.
An alternative approach is accordingly developed here that does not
encounter these difficulties and that provides an elegant unified description
of gauge theories of groups involving space-time symmetries as well as
internal symmetries.

Our scheme is based on the geometrical properties of a principal fiber
bundle G(G/H, H), with H a subgroup of G and G/H interpreted as space-
time. The idea of describing gauge theories of space-time symmetries in
terms of this kind of bundle has been previously explored by Ne’eman and
Regge [77; this scheme differs from theirs in the concepts of gauge transfor-
mation and connection. Poincaré gauge theories are readily generalizable
to gauge theories of groups involving other space-time symmetries as well
as internal symmetries, as we have shown elsewhere [8]. The present work
is the appropriate fiber-bundle description of this general formulation of
gauge theories. The groups G and H are Lie groups, but otherwise no
requirements are imposed on them. They do not have to be compact,
semisimple, etc. In particular, and of special importance, they are not
necessarily connected Lie groups. Thus the important discrete space-time
symmetries parity, time reversal and (in the case of the conformal group)
inversion, have a natural place in this scheme.

A more detailed discussion, making use of appropriate coordinate
systems on G(G/H, H) and the corresponding component sets of the
geometrical fields, will be published elsewhere. In the present work (apart
from one lapse in Sec. 3), a coordinate-free notation is used throughout.

We mean, by G, a differentiable manifold together with a differentiable
mapping G x G — G satisfying the group axioms, and we mean by G/H the
set of left cosets, which inherits a differentiable manifold structure from G.
No further structure is implied in our definition of the principle fiber bun-
dle G(G/H, H). The structure group of this bundle is #, acting on the right.

To avoid misunderstandings, we wish to make clear at the outset that
our construction of the gauge theory of the group G involves no
modification of the underlying bundle space G(G/H, H}. Gauge transfor-
mations are defined to be the automorphisms of this bundle; that is, they
are the diffeomorphisms that preserve fibers and preserve the action of H
on fibers. They constitute an infinite-parameter group. The finite-parameter
subgroup that preserves the Maurer-Cartan form is isomorphic to G, and
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in fact consists of the left actions of G on itself. Contact with gauge theories
is made by putting a generalized connection on G—an equivariant vielbein
of equivalently an equivariant l-form valued in the Lie algebra of G.
Associated with any generalized connection is a set of canonical
infinitesimal generators Q, of gauge transformations, satisfying a distorted
form of the commutation relations of the Lie algebra of G.

2. GEOMETRY OF A LIE GROUP

In this section some basic concepts are reviewed in order to provide a
background and establish the notation for our scheme.

Denote the general element of a Lie group G by - and a particular
element by g. The left translation associated with g (or the left action of g
on &), the right translation associated with g, the adjoint action of g, and
the inversion mapping are the diffeomorphisms on the group manifold
defined by

L,=g:, R,z=rzg, Dz=gzg ', Ne=:z! (1)

Left translations commute with right translations. Moreover, if fs a
diffeomorphism that commutes with all right translations

flzgy=f(c) g

for every ge G, then [ is a left translation (gq{z)= f(z}z ' is independent
of z, and =L, ). Therefore, a diffeomorphism commutes with every right
translation if and only if it is a left translation (and vice-versa).

A vector field generates a one-parameter group of diffeomorphisms.
Let X be a right-invariant vector field (dR, X =X for every geG)und Y a
generator of right translations. Then the infinitesimal transformation law of
X implies [X, Y]=0. The diffeomorphisms generated by X therefore
commute with all the right translations associated with elements of Gy, the
connected subgroup of G. Therefore, X generates a one-parameter group of
left translations. Right-invariant vector fields generate left translations (and
vice-versa),

Since the commutator of two left-invariant vector fields is left-
invariant, the lefi-invariant vector fields constitute an algebra under com-
mutation, the Lie algebra ® of .

A left-invariant vector field X is uniquely determined by its value at
any point {since dL_ X, = X,.). Let X_ be a vector at a point - and let X be
the unique left-invariant vector field determined by 1it. A mapping
0.: T{G)— ® can be defined by 8.X_ =X (for every vector X. at z). The
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collection of these mappings for all ze G constitute a Lie-algebra valued
1-form @, the Maurer-Cartan form.

A basis for the tangent space at any one point determines a ieft-
invariant vielbein { R ,}, which we call the right vielbein. It provides a basis
for the tangent space at every point. The dual bases of the cotangent spaces
constitute a set {R*} of left-invariant 1-form fields, satisfying R*(Rz)=44.
Since R,N=NL, -1, the vectors

L,= —dNR, 2)

are right-invariant. They constitute the feft vielbein {L,}. The fields R,
provide a basis for ®. The constants ¢, defined by

[R.. Rs] =CABCR(' (3)

are the structure constants of G. A matrix representation of ® is provided
by a set of matrices G, satisfying

(G, GB}chB(.G(“ (4)

A matrix representation of G 1s a matrix-valued scalar field .5 satisfying
S(g)S(z)=S(gz) and S(z ')=5"'(z), for every ge G, z € G. The behavior
of § under the diffeomorphisms (1) is found to be

LYS=5S(g)S, RrS=SS(g). DIS=S(g)SS(g™"),

(5}
N*§=8""'
The generators of the representation S (with respect to a particular basis
iR, of ® are the matrices

G,=S"'R,S (6)

They are left-invariant and therefore constant matrices, and they satisfy (4),
thus providing a matrix representation of ®. Let § be a matrix represen-
tation of G that is faithful for the connected subgroup G,. There is then no
geG,, other than the identity element, for which S(z)= §(z) S(g) for
every z e G. That is, there is no nontrivial right translation associated with
an element of G, that leaves S invariant. The infinitesimal version of this
statement is that there is no nonvanishing left-invariant vector field X such
that X(S$)=0, or X*R,S=0 implies X*=0. Multiplying by S~' on the
left, X7G =0 implies X" =0. Therefore, the generators of a matrix
representation of G that is faithful for G, are linearly independent.

Given a matrix representation of ®, in which the R, are represented
by matrices G,, the Maurer-Cartan form # is represented by a matrix-
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valued 1-form, or equivalently a matrix of 1-forms, 6=G 04 satisfying
8.R,.=G,. We use the same symbol, #, to denote either the Maurer—
Cartan form or any matrix representative of it. The coefficients 04 are
ordinary 1-forms. We have G4(0°R ;). = G ,. Choosing a representation of
®& with linearly independent generators, this implies %R, = 6%, 84 = R",
and hence

f=G, R (7)
The matrix-valued 1-form S~'dS satisfies (S™'dS)R,=S 'R,S=0G,,
SO

f=5"'4dS (8)

If G is a matrix group, we can use the self-representation, and write
f=:-""4: {9)

The Maurer-Cartan form is left-invariant (Ly6=10). Its translormation
law under right translations is easily found from (9)

R,-0=D, .8=gbg™! (1

Writing z8 = dz, we see that 0=d{z0))=dz A §+ z d6. Multiplying by z '
on the left, we get the Maurer—Cartan equation

di+ 8 A0=0 (11)

The definition (5) is equivalent to R,S=SG,. Applying N to this
relation and recalling the definition (2), we find L, 5=, S. From these
two relations it 18 not difficult to deduce that

(L., Lg]= _(’AB(-L(‘ (12)
and

[RAvLB]:O (13)

Define the scalar fields D,”=R*1,). Then D,°G,=0L, =
S 'L,S=5"'G S From this relation

D2G,=S§ 'G,S (14)

one deduces that the matrix field D is a representation of G {the adjoint
representation). Substituting (7) into (10), we obtain the transformation
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law of the 1-form fields R” under right translations, and hence the transfor-
mation law

dR,R,=dD ,R,=D  %(g) Ry (15)

of the right vielbein.

The generators for the adjoint representation can be found as
follows. Emploving the Maurer~Cartan equations and the well-known
identity 2d0(X, ¥)=X(0Y) — Y(6X)—0[X, Y], satisfied by any i-form,
we find Dy cp, Ge=Dg"[Gp, G, 1=[0Lp, OR,1=20 A O(Ly, R,)=
2d(R ;. L) = R (6L) = R, D G for any representation G , of the basis
of ®. Hence D", " = R, D . Defining matrices ¢, by

(¢4 )1)(. = CDAC {16)

we see that Dc,= R,D. Comparison with (6) identifies the ¢, as the
generators of the representation D,

3. LIE-ALGEBRA VALUED FORMS

Let «» be a Gy-valued 1-form field on G. Associate with it a derivative
operator V that acts on ®-valued p-forms @ according to

VO=db+wmn @ (17)

(The product A here involves the product [ , ] on & as well as the usual
wedge product on forms. Explicitly, if ®=@7G, and ¥ =¥"'G, are two
(®-valued forms, then @ A ¥ =1@% A ¥ cp G ,). The derivative operator
V satisfies

VVe= 14 ro (18)

where

Y= -2Nw (19)
This -valued 2-form satisfies the Bianchi identity
V%=0 (20)

A G-valued 1-form w is nonsingular if w{X)=0 implies X =0. Writing
w=E*G ,, this means that the 1-forms E are linearly independent, and so
there exists a dual vielbein {E,} satisfying E(Ez)=d}.

A local diffeomorphism with support Uc G is a diffeomorphic
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mapping /2 U — fUc G If w is a G-valued 1-form and there exists a local
diffeomorphism f with support U such that w=f*0 on U, then =0
on U. That is, on U, —{%=dw+twa W=d(f*)+ (f*0) A (f*0) =
S* A8+ 0 A 8)=0on account of the Maurer-Cartan equations, Moreover,
suppose @ is a nonsingular ®-valued 1-form satisfying ¥ =0 on some
neighborhood of zye G. Then there exist neighborhoods U of =, and local
diffeomorphisms f with support U such that w=f* on L.

Proof. Put a coordinate chart on a neighborhood of z, and denote
coordinates of a point z by z*. Let =, be any arbitrary point of G and put
a chart on a neighborhood of it, denoting coordinates in this chart by =M.
The existence of a local diffeomorphism satisfying fr, =z, w=[f* is
equivalent to the existence of functions SM(=) satisfying f¥(z,) =z/™ and
E(z)= R, [ f(z)]8f™/0z". This latter differential equation for the /™ can
be more concisely written as R E ' =df™. The integrability conditions
are O=d[R(f)E*T=RY (fydf® n E* + R FYAE? The first term in
this latter expression is RY (1) RV E? A E'=4[R,, RV EP A E1=
25 RY(fYE® A EX. We finally obtain the integrability conditions in the
form 0= RY(f)dE* + Le, " EP A E€). The term in brackets is just the set
of components of Vo = ~3%. Therefore, if 4 =0 in a neighborhood of z,,
there is a neighborhood U of 2o in which a solution /™ exists. The non-
singularity of w implies the nonvanishing of the Jacobian |Jf*/2:"|. The
functions f therefore specify a local diffeomorphism.

In particular, we have shown that, if w is a nonsingular G-valued
I-form, then w is locally diffeomorphic to the Maurer Cartan form in a
neighborhood of every point if and only if 4= —2(dv + w A w)=0.

4. THE FIBER BUNDLE G(G/H, H)

Let H be a Lie subgroup of G. The left cosets gH are the orbits of the
right action of H on G. They are the fibers of the principal fiber bundle
G(G/H, H) with structural group A and base space G/H. A vector tangen-
tial to a fiber is called a vertical vector; the tangent spaces to the fibers are
the vertical spaces. Fibers are mapped to fibers by left translations and
hence vertical spaces are mapped to vertical spaces by left translations.
Therefore, a vertical vector at any one point of G determines a unique left-
invariant vertical vector field. The left-invariant vertical vector fields are the
Jundamental fields on G(G/H, H). They generate the right translations R,
with 4 e H, the connected subgroup of H. They constitute a subalgebra v
of ®, isomorphic to the Lic algebra of H. A subspace a of G (not in general
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a subalgebra), called have the transfational part of ®, can be chosen so that
G=a+vo (21)

(direct sum of vector spaces). Any clement of ® can then be resolved into
two components, one in a and one in v. For example, for the Maurer-
Cartan form we write 8 = aff + v0. The vertical vectors are those that satisfy
(af) X =0. Those that satisfy (v8) X =0 will be called 6-horizontal. Any
vector can be expressed as a sum of a #-horizontal component and a ver-
tical component, X = aX + vX. There is a @-horizontal space at each point
of G. The system of #-horizontal spaces is invariant under left translations.
The choice of a particular translational part a of ® corresponds to choos-
ing the 8-horizontal space at any one point of G.
Let {R,} be a basis for the algebra v of fundamental fields. Then

[Ra’ Rb] = Cab(‘Rr (22)

where the ¢, are the structure constants of H. A basis for the 8-horizontal
space at any one point determines a set {R,} of left-invariant 6-horizontal
fields, providing a basis for a. The R, and R, together constitute a right
vielbein R, where

A=(a, a) (23)

Referred to this basis of @, the two parts of 8 are explicitly
al = R*G,, vl=RG, {24)
and the 0-horizontal and vertical components of a vector X are explicitly

aX=X*R,, uvX=X'R, (25)

Since N preserves the fiber H, the vectors L, given by (2) are vertical
on H. Vertical vectors are those satisfying R?X =0. Therefore, on H,
R*L, =0, The matrices of the adjoint representation of G therefore satisfy

D,f(h)=0 (26)

for every he H. The submatrices D,"(k) are those of the adjoint represen-
tation of H, and the matrices D,?(h) provide another representation of H
that will be important in what follows. An alternative proof of (26) comes
from noting that vertical spaces are mapped to vertical spaces by the right
action of H (i, the right action of H preserves the fibers). Therefore
dR, R, is a linear combination of the R,, for every he H. Comparison with



A Unified Approach to the Gauging of Space-Time and Internal Symmetries 991

the transformation law (15} then gives us (26) and also the behavior of the
basis of v under the right action of H

dR,R,= D (h) R, (27}

If the system of §-horizontal spaces is invariant under the right action
of H, the space G/H is called reductive. In this case, dR, R, = D,"(h) R, and
D, (h)=0. (Observe that the infinitesimal form of this condition,
LR, Rpl=c R, c =0, 0r [v,a] < ais somewhat less restrictive if H is
not a connected group; it implies only that the system of 8-horizontal
spaces is invariant under the right action of H,.) From (14) we see that
D,"(h)=0 is equivalent to the condition that D (k) G,=8 '(h)G,S(h)
for any representation S of G and for all A< H. That is, h ~'ah < q for all
he H. The transformation law (10) then implies

R¥ (v8) = h(s0) h~ (28}

if and only if G/H is reductive. Therefore, the v-valued 1-form v# is a con-
nection form (in the usual sense) on the principal fiber bundle G(G/H, H) if
and only if G/H is reductive. Incidentally, its curvature form vanishes if and
only if a is a subalgebra of ®. In what follows, we do nor impose the
restriction that G/H be reductive.

Let § be a matrix representation of # and let p be the vector space on
which the matrices act. A mapping ¥: G - p (i.e., a p-valued scalar field) is
called equivariant if

R ¥=8hmv¥ (29)

for every he H. This concept can be extended to p-valued vector fields: a
p-valued vector field X is equivariant if, for every scalar ¥ invariant under
the right action of H, X(¥) is equivariant. It follows that ¥ satisfies a con-
dition of the form

dR,X=8(m X (30)

for every he H. A p-valued I-form field o is equivariant if el Y} is
equivariant, for every right-invariant vector field Y. [t then follows that
R}- 1@ = §(h) w. The concept of equivariance is readily extended to tensor
fields. Conditions such as (29) or (30), satisfied by equivariant fieids, are
called fiber conditions. An important property of an equivariant field is that
it is determined on the whole of a fiber by its value at any one point of the
Jiber. For example, (29) is equivalent to

Y(zh)=8(h~ ") ¥(z) (31)
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The group G of left translations maps fibers to fibers and so induces,
in an obvious way, a group of diffeomorphisms on G/H. We interpret G/H
as space-time and we interpret pullbacks (from a section) of equivariant
fields as fields on space-time. The subgroup of the group G of left trans-
Jations that does not affect G/H corresponds to an internal symmetry group
/. The subgroup / is the maximal subgroup of H that is an invariant sub-
group of G. The group G/I is a space-time symmetry (Poincare, affine or
conformal group, with G/H Minkowski space, or de Sitter group with G/H
de Sitter space). The whole group G is a semidirect product (G/f) =< L

We now generalize the group G of left translations to a gauge group,
and introduce the appropriate connection for this gauge group.

5. GAUGE TRANSFORMATIONS

We define a gauge transformation to be a diffeomorphism f on G that
commutes with the right action of H

Rhf=th (32)

for every he H. Equivalently
fleh)y=ftz) h (33)

for every he H. Observe that the action of a gauge transformation on every
point of a fiber is determined If its action on any one point of the fiber is
given. Define g(z)=f(z)z ' Then gl(zh)= g(z). Thus, associated with any
gauge transformation f is a mapping g: G/H G such that f(z)=g(x):z
(x=mz). A gauge transformation is therefore a “gauged left translation” in
the Yang-Mills sense that a group is generalized to a gauge group by
allowing the group elements to be space-time-dependent. (Note, however,
that not every G-valued function on G/H specifies a gauge transformation;
in general, f(z)= g(¥) z is not even one-to-one.) Gauge transformations on
a principal fiber bundle P(M. H) were defined to be diffeomorphisms
satisfying (33) by Atiyah, Hitchin, and Singer [9]. but these authors
explicitly restricted them to gauge transformations associated with an inter-
nal symmetry group, by imposing the additional condition nf{z) = nz that
no action be induced on M.

Let ¥ be a fundamental field and let R, be an element of the one-
parameter group of right translations generated by it. Then (21) implies,
for any gauge transformation f and any vector field X, that
dR, df X =df dR, X. For an infinitesimal H, this is [ ¥, dfX}=4dfLY. X]=
[dfY, dfX]. Since this is valid for any X, we have Y =dfY. Therefore,
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fundamental fields are gauge-invariant. 1f H is connected, the converse
holds: any diffeomorphism that leaves every fundamental field invariant is
a gauge transformation. If H is nor connected we find that diffeomorphisms
that leave every fundamental field invariant are somewhat more general
than gauge transformations in that they need satisfy (32) or (33} only for
he H,, the connected subgroup of H. These more general diffecomorphisms
have the form f(z)= g(x)z where g(x) is multiple-valued, depending on
the piece of the fiber =~ 'x in which z is located as well as on x. These
diffeomorphisms leaving fundamental fields invariant are in fact the gauge
transformations of G{G/H,, H), rather than of G(G/H, H).

Let A be a generator of a one-parameter group of gauge transfor-
mations. Then, for an infinitesimal gauge transformation generated by A,
(32) implies [ A, dR, Y]1=dR,[A, Y] =[dR,A, dR, Y] for any vector feld
Y. Therefore, A =dR, A for any he H. The generators of gauge transfor-
mations are the vector fields that are invariant under the right action of H.

Applying a gauge transformation / to the fiber condition (29), we find
that f* ¥ satisfies the same fiber condition as ¥ (and similarly for eq. 30).
That is, equivariance is a gauge-invariant property.

The gauge transformations that do not induce diffecomorphisms on
G/H (more precisely, the gauge transformations that induce the trivial
diffeomorphism on G/H) are of particular interest. They form a larger
group than the group of “gauged internal symmetries.” These “pure” gauge
transformations satisly the extra constraint

nf{z}=m:z (34)

Since = and f(z) are in this case on the same fiber, y(z)=z 'f(z)e H for
every zeG. The H-valued mapping n: G — H is equivariant, with fiber
condition

nizhy=h 'n(z)h (35)
The correspondence between pure gauge transformations and these
equivariant H-valued mappings is a group isomorphism [z~ 'f - f,(z)=

2 f(z) -2 ' fo(z) where - is the group multiplication in H.] Under a pure
gauge transformation f

Hzy=zn(2) (36)

the transformation law of the Maurer-Cartan form (9) is easily seen to be

S* "9=ntn~"—dp-n (37)
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6. GENERALIZED CONNECTIONS

We define a generalized connection on G(G/H, H ) to be a G-valued
1-form «w satisfying

1. R} iwr=hwh '
2 w(X) =0 implies X =0 (38)
3 For any vertical vector X, w(X)=0(X)

That is, w 1s equivariant, satisfying the same fiber condition as the Maurer-
Cartan form; « is nonsingular and maps any vertical vector to the
fundamental field to which it belongs. In particutar, the Maurer-Cartan
form is a generalized connection, calied here the trivigl connection.

Let @ be a connection {we now drop the qualifying adjective
generalized) and write w = E4G . Splitting « into a part belonging to a
and a part belonging to o

w=aw+ vw

(39)
am = £*G,, v =FEG,
Condition (3) implies, for the associated vielbein {E;}
E,=R, (40)
and condition (1) implies the fiber condition
dR,E, =D *(h)E, (41)

The vectors satisfying (aw) X =0 are the vertical vectors. Vectors
satisfying (we2) X =0 are called w-horizontal, or simply horizontal vectors.
Any vector can be expressed as a sum of a horizontal and vertical
component

X=aX+vX
aX=X"F_, vX'=X“R,

(42)

(these projection operators @ and v are not to be confused with the
previous ones (25), which relate to the particular case w=#).

The connection w specifies a system of horizontal spaces; the transfor-
mation law (41) shows that this system is invariant under the right action
of H if and only if D, *(h) = 0, that is, if and only if G/H is reductive. In that
case, vw 1s a “connection in the usual sense” on G(G/H, H), with transfor-
mation law R, (vw) = h(vw) h .
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Considering an infinitesimal right translation, one can deduce from
(41) that [R,, Eg] =c,4" E. Therefore, the scalar fields 2, defined by

[EAvEB]:QAB('E(' (43)

satisfy 2, = ¢, The curvature of a connection @ is the G-valued two-
form

G=-Wdw+w Arw) {44)

Now, note that 2du(E,, Egz)=E (wEz) — EglwE,) — wlE,, Eg] =
2,5 G (we have made use of wE,=G,, and its consequence
EdwEp)=0). Also, 2w A w(E,, Eg) = [wE,, wE,] =c ;" G,. Therefore

GE Eg)=1(0,,— Cag') G (45)

It follows that %(E,,, E;)=0 and hence that %(X, ¥} =0 if either X or Y or
both is vertical In other words

X, Y)=%{uX, aY) (46}

We define a fiber neighborhoed of G(G/H, H) to be an open set
U=n"'V where V is a neighborhood of G/H. Then, if U is a fiber
neighborhood, we define a local gauge transformation with support {/ to be
a diffeomorphic mapping f: U - fU satisfying R, f = fR,, (for every he H).
From the theorems established in Section 3, we know that local diffeo-
morphisms f exist, supported on a neighborhood of any point, such that
w=f*8, if and only if ¥=0. Let £, be such a local diffeomorphism, with
support U, (a neighborhood of some point in G). Then, from (40), we see
that f, maps every fundamental ficld on U, to a fundamental field on folU,.
The diffeomorphism f, satisfies f,(zh) = f,(z) h for every - and 4 in U,
We can extend the support of £, to a fiber neighborhood U=z 'nU,.
That is, there is a unique local diffeomorphism f with support U/ defined
by f(zh)=f(z} h (for every e U and every he H) and the requirement
that / coincides with f, on U,. This establishes that, if  is a connection,
there is a fiber neighborhood of every fiber and a local gauge transformation
supported on it satisfying w = f*8, if and only if % =0.

The conventional fiber bundle geometry suggests an alternative way of
defining a curvature. We define the pseudocurvature # of a connection w
to be the 2-form such that, for any two vectors X and ¥

FX, Y)= —2dwlaX, aY) (47)
From (44) and (46) it follows that

F =%+ 2a0 A aw (48)
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Since 2{aw A aw )W E ., Eg)=20% 8%¢,, G . we have # =% il and only if a
18 an abelian subalgebra of ®.

The transformation law of a connection « under a pure gauge trans-
formation f, f{z)=:n(z), 15

f* 'w=nog '—dp-n! (49)

We prove this by considering the case of an infinitesimal pure gauge trans-
formation. A vector field A that generates gauge transformations is
invariant under the right action of H, i.c, [R,, A]=0. It generates pure
gauge transformations if it is rertical, A= —y“R,. This is just the
infinitesimal  cxpression of (36). The condition [R,, 4]=0 implies
R.n"+n' C," =0, which is the infinitesimal version of the fiber condition
(35). We can write A= —n*E,, #* =0 and consider the infinitesimal trans-
formation law 0F ,=[A4, £,] of the vielbein. It is not difficult to deduce
from this that E* = ~dn + nP E Q5. Since 4* =0 and 2, =c,", we
have E*'= —dy'+p®E cg” This transformation law for the com-
ponents of « under an infinitesimal pure gauge transformation is just the
infinitesimal form of (49).

7. FIELDS ON SPACE-TIME

Let o: G/H - G be a section on the fiber bundle G(G/H, H). If no
global section exists, it is possible to work with a collection of local
sections. (Details are not gone into here because the notation becomes
cumbersome.) With the aid of g, it is possible to define fields on space-time
G/H as pullbacks of equivariant fields on G. If w is a connection, we define
the gauge potentiul to be the G-valued |-form

F=o¢*w (50)

on G/H. The a-valued 1-form al” on G/H is nonsingular. To see this,
suppose X is a vector on G/H satisfying a/(X)=0. That is, 0= (c*aw)X
= (aw){do X'). Therefore, doX is vertical. Now dr maps vertical vectors to
zero, so dndoX =0, and since o =1, dn do is the unit mapping on the
tangent spaces to G/H. Therefore, X = (. Since the a-valued 1-form

e=al =¢"C, (51)

is nonsingular, the 1-forms e* on G/H are linearly independent. They
provide a basis {¢*} for the cotangent spaces to G/H, and there is, dually, a
vielbein {e,} satisfying e*(e,) = 0%. Since G/H is interpreted here as space-
time, e, is a terrad.
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A connection w is completely determined by its gauge potential I': Sup-
pose w and @’ are two connections with the same /. Then o*¢ =0 where
¢ =w —w’. Therefore ¢(doX)=0 for any vector X of G/H. Therefore ¢
annihilates any vertical vector, because both w and «’ satisfy (38, 40).
Since any vector on G at a point on ¢(G/H) can be resolved into a vertical
component and a component tangential to o(G/H), it follows that ¢ =0 on
a(G/H). But ¢ is equivariant, and therefore ¢ =0 everywhere.

The diffeomorphism ¢ induced on G/H by a gauge transformation f is
@ =mnfn "', or alternatively

@ =nfo (52)

(although it is, of course, independent of the choice of o). We denote the
points of G/H by x and write x' = @{x). With reference to a given section o,
we can associate, with any gauge transformation f, a unique H-valued field
h on G/H, ie., a mapping h: G/H — H, deftned by

hix)=[o(x'}] ' fLo(x)] (53)

Every gauge transformation specifies in this way a unique pair of mappings
¢:G/H— G/H and h: G/H — H. Conversely, the pair of mappings ¢, h
uniquely specifies the gauge transformation f (this is fairly obvious from
the geometrical situation). We accordingly introduce the notation
f= (¢, k). We have already defined a pure gauge transformation to be one
for which ¢ is trivial (¢ = 1). We define a special gauge transformation to
be one for which A is trivial [#(x)=¢ for every xe G/H, which we denote
by h=1]. The product rule for gauge transformations, in terms of this
decomposition, is (¢, M )=(9,, k)= (@. h} where @=¢,2¢,, and
H(x)=h{@,x) hy(x). Consequently, any gauge transformation can be
regarded as a product of a pure gauge transformation followed by a special
gauge transformation: (¢, #)= (g, 1)< (1, A). Observe that, for a pure gauge
transformation f(z)=zn(z)

h(x)=nla(x)] (54)

(le, hi=c*nor h=x-0).

Under a special gauge transformation, I transforms simply as a
l-form under the diffeomorphism ¢. Under a pure gauge transformation,
the transformation law of I follows from the transformation law (49) of @
in conjunction with (54). The transformation law of /" under a gauge
transformation f = (¢, A) then turns out to be

[=c*(f ‘w)=¢* "(Wh '—dh-h ") (55)
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In particular, the tetrad {e,} has the homogeneous transformation law
¢, =do[D,F(h)e,] (56)

The gauge field associated with the gauge potential I is the pullback
of the curvature, G=0¢*%. That is

G=-2dlr+I A ) {57)
Its transformation law under a gauge transformation is homogeneous
G =@* "(hGh™") (58)

Its components define a curvature G“ and a torsion G7

The “H-curvature™ and “H-torsion™ are similarly defined from the
puilback F=¢*#. The anholonomic components of this G-valued 2-form
on G/H are F,5=Fe,,ey)={a*F WdoE,, doEy)=c*[(F (E,, E5)]
=0*Q,;"=02,,(5).

Fqﬁ(‘= Qnﬁf(a) (39)
Equation (48) telis us that

F=G+2ne (60)

from which it follows that F= G if and only if a is an abelian subalgebra of
® (which is of course the case for the Poincaré, affine, and conformal
groups, but not for the de Sitter group. Incidentally, note that the de Sitter
gauge theories will also have additional complications in our scheme
because a global section ¢ does not exist in this case and we are forced to
interpret ¢ as a collection of local sections).

A “matter ficld” on the space-time G/H can be interpreted as the
pullback of an equivariant scalar field (generalization to equivariant p
forms 1s straightforward)

Wp=a*¥=¥:qg (61)
Its transformation law under a gauge transformation turns out to be
¥'=o* 'Sth)y (62)

The infinitesimal form of this transformation law (62) is of interest. It
enables us to show clearly the relationship between the formalism of this
work and that of the standard approach to Poincaré gauge theories
[10,11]. Let A be an infinitesimal vector field, invariant under the right



A Unified Approach te the Gauging of Space-Time and Internal Symmetries 999

action of H and therefore generating an infinitesimal gauge transformation.
The infinitesimal transformation law of a scalar field ¥ on G is simply

¥ = A(¥) (63)

The anholonomic components A*= £4(A), pulled back, give a set of
scalars A" =0¢*A"=A"-0 on G/H which {because of the equivariance of
A), completely determine A. They are to be regarded as the (space-time-
dependent) parameters of the infinitesimal gauge transformation. The
action of the infinitesimal gauge transformation on the field y is

5‘!’:AAQA¢’1 Q. =0*E ¢ (64)

The operators (), are the generators of the action of gauge transformations
on ¢ and are weli-defined operators when acting on the pullback of any
equivariant field. Their commutation relations are easily obtained from
(43) and (64). We find [Q,.051=2,5(6) 0 or, in terms of the H
curvature and / torsion

[Q:U Qﬂ} = Fz,ff(‘Q('
[Q.05] :cuBCQ('

The quantity @ ,% transforms homogeneously under a gauge transfor-
mation [ = {e, i)

(63)

(Qa¥) =0* "D (h) S(h) Qi (66)

and so can be regarded as a covariant derivative of . Explicit expressions
for O are

Q. =D,y=(Dd)e,, Dy=dy+I"G.y
Qul/} = _Gul/’
where the G, are the generators of the matrix representation § of H. The

reader is referred to Ref. 8 for further details (but beware of the sign
conventions, which are different from those employed here).

(67)

8. CONCLUDING REMARKS

Existing attempts at constructing gauge theories of space-time sym-
metries are many and varied; see, for example, the review article of
Ivanenko and Sardanashvily [3] and the works cited therein. Our aim has
been to construct a clear and consistent geometrical background that
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avoids the pitfalls and complications of many earlier attempts. Questions of
Lagrangian structure have not been touched upon; a Lagrangian would be
a gauge-invariant constructed from w and ¥, the independent dynamical
fields being the I and . Ne'eman and Regge [7] and Pérez-Rendon and
Ruiperez [12] have investigated the problem of Lagrangian structure in a
scheme that is similar to ours.

Many existing fiber-bundle descriptions of gauged space-time sym-
metries run into difficulties and complications by attempting a too close
analogy with the standard fiber-bundle descriptions of internal symmetries;
attempts are made to have the whole of the group G acting on the fibers.
Various ad hoc concepts then have to be introduced (affine frames, second-
order {rames, soldering forms, etc.) and the identification between a
translational gauge potential and a tetrad does not work out [3, 4]. In our
view, in a fruitful approach to a fiber-bundle description of a gauged space-
time group G, only the subgroup H should act on the fiber. “Internal
translations” are not needed. The above-mentioned difficulties and
complications are then not encountered. In the scheme we have presented,
the translational gauge potential is essentially a tetrad and the linear
independence of the tetrad vectors is ensured.

In their action on space-time (base-space G/H) and on fields over
space-time, the gauge transformations consist of a local action of H
together with general diffeomorphisms of space-time. By a formal reinter-
pretation, “general diffeomorphisms” could be replaced by “general coor-
dinate transformations.” A careful analysis (carried out by von der Heyde
for the Poincaré case [10]) reveals that it is more proper to regard the
action of a “gauged translation™ as a parallel transport operation rather
than a general coordinate transformation. This interpretation is implicit in
our equation (67) for .. Note that Q¥ =Dy does not transforms
homogeneousty and independently of Q,i, if G/H is not reductive (e.g.,
conformal gauge theory [13]).

The interpretation of a gauged generalization of H, together with
space-time diffeomorphisms, as a gauged generalization of a space-time
group G, is fully justified by the fact that, in the “ungauged limit” (group G
of left translations), we recover a realization of the group G as a group of
actions on the points x of space-time and on space-time fields . Indeed,
we get the “correct” action (the usual action of the Poincaré group as the
group of isometries of Minkowski space, action of the conformal group on
Minkowski space, action of the de Sitter group as the group of isometries
of de Sitter space). The realization of the group G as a group of transfor-
mations on points x of space-time and fields y over space-time is in fact an
example of a nonlinear realization in the sense of Coleman, Wess, and
Zumine [14] or Salam and Strathdee [157. Space-time itself takes the
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place of Goldstone fields. The “trivial” potential /"= o*8 appropriate to the
ungauged (global) action of G is @ ' do, which is analogous to the connec-
tion of Callan er al. [167]; its two pieces al” and vf" are analogous to their p
and v.

The Poincaré version of the refations (63), with curvature and torsion
taking the place of structure constants [11] have occasionally been
criticized [3, 17]. The view taken seems to be that, since the generators Q ,
do not satisfy the commutation relations of ®, there must be something
wrong in interpreting the transformations generated by them as a gauged
generalization of the action of G. The situation can be clarnfied by
considering the freedom associated with the choice of parametrization of
the infinitesimal gauge group. The generators @, arose from choosing as
parameters the pultbacks of the anholonomic components of A with respect
to the vielbein E,. If. instead, we employ the left vielbein {L 1 for this
purpose, the parameters are a*=a*(L*A), (53) becomes & =a' M i,
My =0*L s, and the generators —M , satisfy the usual commutation
relations, [M,, My)= —c " M, (compare eq. (2.11) of Harnad and
Pettitt [18]). A further pleasant feature of this parametrization is that the
parameters for the infinitesimal global transformations (left translations)
are constants. However, the generators @, are more appropriate than the
M, in the context of the gauged generalization, because of the simple
transformation law {66) of the O , , and because of the way that the nter-
pretation of gauged translations as parallel transport is manifested in (67).

The constraints (38) distinguish our generalized connection w from the
more general p of Ne'eman and Regge. Our aim has been to provide a
consistent fiber-bundle description for a certain class of classical physical
theories (Hehl's Poincaré gauge theory and its generalizations, with or
without internal symmetries). In this context, the constraints (38) are just
what are needed to produce the gauge potentials in the base space (as
pullbacks). The relaxation of the third constraint becomes desirable in a
quantized theory, since the degrees of freedom that are suppressed by this
constraint are the ones that correspond to the ghosts [19, 20].

The generalization of our scheme to incorporate supersymrmetric
theories appears to be straightforward. The algebra ® is in this case a
graded Lic algebra. The fermionic generators of supersymmetry are
included in the translational part a. The base space G/H is replaced by
a superspace. Equation (67) incorporates the action of gauged super-
symmetry as well as gauged ordinary translations. Ne'eman and Regge
identified gauged supersymmetries as anholonomized general coordmate
transformations. Our gauge transformations are diffeomorphisms on the
bundle G; interpreted passively, they are coordinate transformations on G,
and our interpretation of supersymmetry is then identical to theirs.
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