Gauge theory of a group of diffeomorphisms. lil. The fiber bundle description
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A new fiber bundle approach to the gauge theory of a group G that involves space-time
symmetries as well as internal symmetries is presented. The ungauged group G is regarded as
the group of left translations on a fiber bundle G(G /H,H), where H is a closed subgroup and
G /H is space-time. The Yang~Mills potential is the puilback of the Maurer—Cartan form and
the Yang-Mills fields are zero. More general diffeomorphisms on the bundle space are then
identified as the appropriate gauged generalizations of the left translations, and the Yang-Mills
potential is identified as the pullback of the dual of a certain kind of vielbein on the group
manifold. The Yang-Mills fields include a torsion on space-time.

1. INTRODUCTION

The exploitation of the structures known as fiber bun-
dles,’? for the formulation of Yang-Mills theories (gauge
theories), has received a great deal of attention in recent
years. In the conventional approach to the gauging of a sym-
metry group G, one puts a connection (Lie algebra valued
one-form) on a principal fiber bundle P(M,G) (M being
space-time) and interprets a “gauge transformation” as a
change of section in this bundle.> There are indications
that this approach is not an appropriate one if G involves
space-time symmetries. Consider, for example, Poincaré
gauge theories,” ' affine gauge theories,''~'* and conformal
gauge theories.'>'® The conventional fiber bundle descrip-
tions of these theories employ ad hoc structures: second-or-
der frames'¢ (conformal) and affine frames'~"? (Poincaré
and affine). The translational gauge potentials on M and the
tetrad on M turn out to be conceptually distinct entities, as
has been pointed out by several authors®'’; this is a clear
indication of the inappropriateness of the conventional fiber
bundle description, in the case of space-time symmetries. In
particular, the conventional fiber bundle description is not
appropriate for a Poincaré gauge theory.

We present an alternative fiber bundle description of
gauge theories that does not encounter the difficulties men-
tioned above, and that provides a unified scheme for describ-
ing space-time and internal symmetries, and their “ganged”
generalizations.

Our approach is based on the properties of the fiber bun-
dles G(G /H,H), where G is a Lie group, H a Lie subgroup,
and G/H is interpreted as space-time. The group to be
gauged is the group G of left translations and a gauge trans-
formation is a bundle automorphism. A connection will be
defined essentially as a particular kind of vielbein on G.

The idea of formulating gauge theories on a principal

- fiber bundle G(G /H,H), with G /H interpreted as space-
time, is not new. It was proposed and investigated by
Ne’eman and Regge,'®!® who studied the problem of con-
structing Lagrangians on the bundle space and showed that
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theidea can be extended consistently to provide a framework
for supergravity theories. Our scheme differs from theirs in
several important respects; their concept of gauge transfor-
mation was different from ours and their connection vielbein
was not specialized. Further investigations into the con-
struction of Lagrangians in the scheme of Ne’eman and
Regge have been made by Pérez-Rendon and Ruiperez.?’ In
the present work we shall not consider the problem of con-
structing Lagrangian theories; our emphasis is on the geo-
metrical structure only.

In recent work?! we have shown how Poincaré gauge
theory can be generalized to groups other than the Poincaré
group (such as the affine, de Sitter, and conformal groups).
The fiber bundle concept was not employed—the formalism
dealt only with quantities defined as fields on space-time.
The present work is a fiber bundle interpretation of these
ideas.

Ii. THE PRINCIPAL FIBER BUNDLE G(G/H,H)

Let G be a Lie group and H a closed Lie subgroup. The
orbits of the right action of H on G are the left cosets gH.
They are the fibers of the principal fiber bundle G(G /H,H)
whose structural group is H (acting on the right). Denoting
the general element of G by z, the left translation associated
with an element of geG is the diffeomorphism z—2' = gz on
the group manifold. On account of the associative law, the
left translations constitute a group of diffeomorphisms on G,
isomorphic to G. Throughout most of this work, we impose
none of the common restrictions on G (such as semisimpli-
city, compactness, and connectedness). We find that they
are not necessary,

Let 0: G /H -G beasection on G(G /H,H). (If no glo-
bal section exists, o can be a collection of local sections; the
notation for dealing with this case becomes cumbersome but
the principles we shall develop remain valid. For simplicity,
we shall not enter into these details.) Then any element zeG
can be uniquely expressed as a product
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z=o0(x)y, 2.1)

withxeG /H, yeH (the pointxeG /H isjust 7z, where 7 is the
canonical projection on the bundle).

Left translations map fibers to fibers and so induce, in an
obvious way, diffeomorphisms on G /H. This enables us to
associate, with any left translation z’ = gz, an H-valued field
h(g,x) on G /H, defined by

go(x) =o(x')h(gx) 2.2)

(where x’ denotes the image of xeG /H under the diffeomor-
phism induced on G /H by z—z' = gz). The geometrical in-
terpretation of (2.2) is illustrated in Fig. 1, in which it is to
be understood that g acts on the left and A = h(g,x) on the
right.

We shall use a prime to denote the transform of a tensor
field under the action of a diffeomorphism. Thus the action
of the diffeomorphism z—-z'=f(z) on a p-form field
¢ = (f~')*¢ and the action on a vector field ¥ will be writ-
ten V' = (df)V. Let ¥ be a set of p-forms that transform
linearly among themselves according to some matrix repre-
sentation S of H, under the right action of H:

V=S¥ (2 =zh). 2.3)

In this definition W is a pseudotensorial form of type (S.5),
where [j is the Lie algebra of H. In the case of scalar fields,
(zero-forms) this prescription is equivalent to the usual con-
struction of an associated fiber bundle.> We shall refer to a
condition of the form (2.3) as a fiber condition. A set of fields
W satisfying a fiber condition is determined on the whole of a
fiber if its value at one point of the fiber is given. For a set ¥ of
scalar fields, the fiber condition (2.3) can be written in the
alternative form

W(zh) =S " '(MV¥(z) . (2.4)

In the case of a set ¥ of p-forms, a set 3 of p-forms on
G /H can be defined as the pullback

Yy=0*'". (2.5)
For a set ¥ of scalar fields, this is simply
¥(x) = ¥lo(x)) (2.6)

and the fiber condition (2.3) then leads to the transforma-
tion law

P(x') =S (h(gx))(x)
under the action of a left translation z' = gz.
Equations (2.2) and (2.7) are essentially the funda-
mental relations of the theory of nonlinear realizations.?*2*
In the present interpretation, G /H is a space-time. Then
(2.7) is the active transformation law of a set of physical

2.7)

4
h FIG. 1. The geometrical interpretation of (2.2).
o(x)
o(x')
X x'
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fields under the action of both space-time symmetries and
internal symmetries. The subgroup I whose left action does
not affect the points of G /H is the maximal subgroup of H
that is an invariant subgroup of G. The group of diffeomor-
phisms on G /H induced by the left action of G is isomorphic
to G /1.* The group I can be interpreted as an internal sym-
metry group and G /I as a space-time symmetry group. The
reasonable candidates for G /I are the Poincaré group (with
G /H Minkowski space), the conformal group (with G /H
Minkowski space, or, in the case of the “full” conformal
group including inversions, Minkowski space augmented by
a “light cone at infinity”**), the de Sitter group?®?’ (acting
on de Sitter space G /H), and the affine group (with G/H a
metricless four-space which can, however, in a dynamical
theory, acquire a metric as a Goldstone field when the affine
symmetry is broken?*?°).

lli. DIFFERENTIAL GEOMETRY OF A GROUP
MANIFOLD

In order to proceed further, we shall need to review
briefly the elementary concepts from the differential geome-
try of a Lie group. The reader will almost certainly be famil-
iar with these concepts, which are well known. However, our
method of presentation is somewhat novel; it is aimed at
establishing the results we shall need in the most rapid possi-
ble way.

Denote the general point of the manifold of a Lie group
G by z. Denote an element of G regarded as an operator that
acts on the group manifold (by left or right multiplication)
by g. Of course, every element is simultaneously a point of
the manifold and an operator on the manifold, but the con-
ceptual distinction is, nevertheless, a useful one. Let e denote
the unit element. Put a coordinate system on the group mani-
fold and use the letters M, N,... for holonomic indices (so that
the coordinates of z will be written z* ). Call this the “main”
coordinate system. In addition, introduce an extra coordi-
nate chart U, containing e, and use the letters 4,B,... for
coordinate labels in U.

In terms of coordinates, an infinitesimal left translation
2’ =gz is given by g* =e? —a* (a* infinitesimal), z’™

= (gz2)™ =z — g" L™, where
d(gz)™
3g‘4 g=e
Write L for the matrix whose matrix elements are L ,* and
write L, for the matrix elements of L ~'. The quantities
L™ are the components of a vielbein (linear frame) on the
group manifold, which we shall call the left vielbein. The
vector fields L, = L,™ 3y, (3, = 3/9z™ ) provide a basis
for the tangent space to G at each point, and the dual basis for
the contangent space is provided by the one-forms
LA =d™ L,"
Under a change of the main coordinate system, L ‘M(z')

= L,M(z)dz'"™ /9z" . Under a change of the coordinatiza-
tionon U, L ,™ =K, ,2Ly™, where K is a constant matrix
(K,%=0g"/3g'*|,_.). This corresponds to a change of
basis of the Lie algebra (see below). The indices A4,B,... have
taken on the role of anholonomic indices.

In an exactly analagous manner, we can define

L M(z) = (3.1)
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@)™

agA g=e
Write R for the matrix whose matrix elements are R ,* and
write R, for the matrix elements of R ~'. We have a right
vielbein consisting of the vector fields R, = R, d,, and the
dually related one-forms R* = dz™ R,

A left-invariant vector field X is one for which X' =X
under any left translation. The left-invariant vector fields are
the linear combinations of the vector fields R, with con-
stant coefficients. In particular, the vector fields R , are left
invariant,soR M(z') = R,~(2)3z'™ /92" (2’ = gz). There-
fore, for a left translation,

dz'™

az¥
Similarly, right-invariant vector fields are linear combina-
tions of L ,, and, for a right translation,

M
";—ZN= [L @)L W™ (2 =z) .

Now let .S be a matrix field on G, providing a matrix
representation of G. The generators of the representation are
the matrices

_95@)

agA g=e
Differentiating S(gz) = S(g)S(z) with respect to g* and
setting g = e, we get

R,™(z) = (3.2)

=[R7YZ)R(EZ)]NM (2 =g2). 3.3)

(3.4)

G, (3.5)

L,S=G,S. (3.6)
Similarly,

R,S=5G, . (3.7)
Hence

S~ 'G,8S=D,%G,, (3.8)
where D is the matrix field

D=LR™!. (3.9)

It is obvious from (3.8) that the matrices D provide a repre-
sentation of G. It is of course the adjoint representation.
Write ¢, for its generators and define the structure constants
of G in terms of the matrix elements of the ¢, :

s =1(c5),". (3.10)

Now write (3.8) in the form G,S(g) =D, (g)S(g)Gc,
differentiate with respect to g% and set g = e, and we obtain

the familiar commutation relations
[G4,Gs] =c¢,3G . (3.11)

From (3.6) and (3.7) we now readily derive the commuta-
tion relations satisfied by the left and right vielbeins:

[RRp]1=cisRe (3.12)
[LoLs]= —easLe, (3.13)
[RoL;]=0. (3.14)

These equations are the infinitesimal forms of the transfor-
mation laws of the left and right vielbeins under left and right
translations. The finite forms are
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L =DAB(g_1)LB’ R,=R, (Z=gz2); (3.15)
Ly=L,, R,=D,%(g)Ry; (Z =1zg). (3.16)
(For example, under the left translation z' =gz,
LMY =L, z) [R ~1(2)R(2) 14", and

L(z2)R ~'(2)R(2') =D(z)D ~'(2')L(z') = D ~(g)L(Z).
This establishes the first of the above transformation laws.
The others are proved similarly.)

The algebra of left-invariant vector fields, defined
through the commutator product rule (3.12), is the Lie alge-
bra of G. Because of (3.11), the generators of any matrix
representation of G provide a matrix representation of the
Lie algebra.

The R,,* are the components of the Maurer-Cartan
JSorm. This is the Lie-algebra valued one-form 6 which, in
any matrix representation of the Lie algebra with generators
G,, is represented by R*G,. From (3.7) we have
xS = R,,*SG, and therefore R, G, =S ~'3,,S. This
can be written in a more abstract form, without reference to
any particular representation, simply as

O=z"1dz. 3.17)
From (3.15) and (3.16) it follows that
RIA=RA (Zl=g2),
(3.18)

R“=R"Dy*(g™") (Z=2zg),

which mean that the Maurer-Cartan form is left invariant
and transforms under right translations according to the
coadjoint representation (D7) !, With the aid of (3.8) this
behavior of the R4 under right translations can be formulat-
edas R "G, = S(g)R*G,S(g™ 1), or, without reference to
any particular representation, 8’ = gfg—!. Thus we obtain
the transformation laws of the Maurer—Cartan form under
left and right translations:

8'=0 (Z=g2), (Z=2zg). (3.19)

[ These laws can also be derived directly from the definition
(3.17). We have 8°(2') = 6(z) under any diffeomorphism.
In particular, under 2z =gz, 6'(z)=0(g 'z)
=2z"'gd(g7'z) =z~ 'dz = 6(z), and under z’ = zg, 6'(z)
=0(287") =gz 'd(zg™") = gb(z)g~".]

In our notation, the Maurer—Cartan equation, in terms
of components, is

—1

0'=g0g

ARy — OyRp* + Ry PRy cpc? = 0. (3.20)

It is equivalent to the commutator relation (3.12).
The (anholonomic) components of the Cartan metric
on G are

Y= —trcscpg = —cpaiepp®. (3.21)
They satisfy
Yas =D Dp”vcp - (3.22)

Proof: Apply (3.8) in the form G,S = D,?SGj to the
case where S is itself the adjoint representation. We get im-
mediately

c45"Dg “=D,"Dy FCEFC
and (3.22) follows. The quantity
(3.23)

_ . D
€48c =CaB ¥DC
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is completely skew symmetric (c,pc = —c P trepec

= —tr [¢,4¢p ]cc, which is easily seen to be completely skew
symmetric). The equation ¢, 5c + ¢4cp = Oisin fact theinfini-
tesimal form of (3.22). The holonomic components of the Car-
tan metric are

Yav =Lar*Ly®V45 = Ra"Ry®Vus - (3.24)
The two alternative expressions are identical on account of
(3.22). Since the L are right invariant and the R* left in-
variant, the holonomic metric is both left and right invar-

iant. In other words, the left- and right-invariant vector
fields on G are Killing fields for this metric.

IV. REFERENCE SYSTEM ON G(G/H,H)

Suppose that coordinate systems are given on G /H and
on H. Let x' denote the coordinates of a general point x
€G /H and let ¥ denote the coordinates of a general point
XYE€H (the letters i, j,... will be used throughout as holonomic
indices for G /H, and the letters m,n,... will be used as holon-
omic indices for A). With reference to a chosen section o,
the prescription (2.1) induces a coordinatization of G, wher-
eby z is given the set of coordinates

M= (xiy™) . (4.1)
The splitting of the holonomic indices
M= (im) 4.2)

corresponds to the local homeomorphisms between
G(G /H,H) and (G /H) ® H. A similar splitting of the anho-
lonomic indices,

A= (a,a) (4.3)

can also be introduced. Put an extra coordinate chart ¥ on
G /H, containing e, and an extra coordinate chart Won H,
containing (ome) ~'. We use the letters @,f5... as coordinate
labels for ¥ and the letters a,b,... as coordinate labels for W.
The prescription (2.1) now determines a coordination of
U = {zeG: mzeV, (omz) ~'e W}, whereby geUis assigned the
set of coordinates

g = (g8 .

[It is possible to be slightly more general and to use different
sections for establishing the coordinatization (4.1) of G and
the coordinatization (4.4) of U.]

A reference system set up according to the above proce-
dure is adapted to the fibration in a particularly useful way.
We shall call such a reference system canonical. Transfor-
mations relating different canonical systems consist of coor-
dinate changes in G /H and in H, and changes of section. Of
particular importance among the possible changes of the ca-
nonical reference system are changes of basis of the Lie alge-
bra

(44)

G, =K,%G,, 4.5)
where K has the special form
& K.*
KAB=(0 b‘,,”)' (4.6)

We shall refer to this as a K transformation.
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By splitting g and zg according to the precription (2.1)
it is not difficult to deduce from the definition (3.2) of the
right vielbein that

R,=0 4.7)

in a canonical system. This implies (through RR ~!=1)
that

R,*=0. (4.8)

Thus in a canonical reference system the sets of compo-
nents of the right vielbein and of the Maurer—Cartan form
have the reduced forms

R," R,” R~ RS*
RAM=((;’ R m), RMA=((; R a) (4.9)

[where, of course, the matrix (R;®) is the inverse of (R, "),
and the matrix (R,,?) is the inverse of (R,™)].

Equation (4.7) means that the vector fields R, are tan-
gential to the fibers. They are the *“vertical” left-invariant
vector fields.

The commutation relations (3.17) in conjunction with
(4.7) imply that c¢,,* =0 in a canonical system
[caer‘yi = Re' =R, ™y R, — R,™IyR,'=0]. It
will be useful to display the commutation relations (3.11) in
the more specific form?!

[GsGs] =€up"G, +€o5°G.
[G.:Gs] =cup7G, +¢45°G..
[Ga’Gb] == Cachc .

Thec,, ¢ are just the structure constants of the subgroup H.

The vectors R, span at each point of the bundle space G
a “horizontal” subspace of the tangent space. Considering
the Lie algebra as a vector space, the left-invariant vector
fields R, (represented by the G, ) span a subspace (not in
general a Lie algebra) that we shall call the translational part
of the Lie algebra of G. These concepts are not, in general,
invariant concepts: horizontal vectors are not necessarily
mapped to horizontal vectors under the (right) action of the
structural group H of the bundle, and the translational part
of the Lie algebra can be changed by a K transformation.

Now consider the adjoint representation of G, restricted
to the subgroup H. On account of ¢, ¥ = 0, we have

D_2(h) Da”(h))
B _ a
D, (h)-—( 0 Dty

(4.10)

(4.11)

The matrices (D, ® (h)) are the matrices of the adjoint repre-
sentation of H and the matrices (D, ? (h)) provide a special
matrix representation of H with the dimensionality of G /H.
IfD,® (k) = O for all heH or if all the D, ® (k) can be trans-
formed away by a K transformation, the space G /H is called
reductive. In that case, there is a canonical system in which?!

(4.12)

The commutator (R, ,R.] is then a linear combination of
the Rg; the horizontal spaces are preserved by the (right)
action of the structural group H and we have a “connection”
in the Ehresmann sense on the fiber bundle G(G /H,H). The
components R* of the Maurer—Cartan form of G are the
components of the connection one-form of this Ehresmann

b_
Coe. =0.
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connection. Thus the components R* comprise a connection
one-formon G(G /H,H) if and only if G /H is reductive (see,
for example, Kobayashi and Nomizu, ! p. 103). In our
scheme, we shall not insist that G /H be reductive. Indeed,
the case when G /H is not reductive is especially interesting.

V. INFINITESIMAL GENERATORS AND COVARIANT
DERIVATIVES OF FIELDS ON G/H

Let W be a set of scalar fields on G, satisfying a fiber
condition (2.3). We define the operators M, and QA , which
act on the pullback ¥ = o*V as follows:

M,p=0*(L,¥), (5.1)
0,¥=0*R,¥). (5.2)

An infinitesimal left translation z' =z —a*L,™
induces a diffeomorphism on G /H given by

xX=x'—a'L,’. (5.3)
[It is instructive to note that the fact that the quantities L
are functionsof x only, L’ = L, (x) independent of y, can

be inferred from the commutation relations (3.14) together
with (4.7); we have

RamamLAi=RaMaMLAi—LAM
= [R,L,]'=0.

S0d,,L,’ = 0.] Under the diffeomorphism (5.3), the trans-
formation law of ¢/ is

Sy =a'M,y. (5.4)

This is the infinitesimal form of the nonlinear transforma-
tion law (2.7). The M, are the generators of infinitesimal
left translations, for the nonlinearity transforming ¢. Inter-
preting G /H as space-time, the transformation laws (5.3)
and (5.4) give the action of a space-time symmetry, or com-
bination of a space-time symmetry and an internal symme-
try, on the points of space-time and on physical fields [for
example, if G is SO(4,2) and H the 11-parameter subgroup
corresponding to the subgroup of the conformal group that
consists of Lorentz rotations, dilatations, and special confor-
mal transformations, we will get the action of the conformal
group on Minkowski space-time and on physical fields*’].

Since the fields L,V satisfy a fiber condition
(L,¥) =S(h)L,¥ (' =zh) (a consequence of the right
invariance of the L, ), the action of M, on Mgy is well
defined. We have M, Mz = 0*(L,Ly V). Therefore the
operators M, satisfy the same commutation relations as the
L,:

[MaMp] = —canMc . (5.5)
Similarly, since the fields R, satisfy a fiber condition
(R,¥) =D, B(h)S(AR,Y (' =zh)

[a consequence of the transformation law of the R, under
the right action of H, given by (3.16) ], we can deduce that
Q495¥ =0*(R,4Rp V) and therefore that the operators
Q, satisfy the same commutation relations as the R, :

[QA ,QB] = cABCQC .

In a similar manner, we can deduce also that

aMRai

(5.6)
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[MA’QB] =0. (5.7)

The fiber condition on R , ¥ leads immediately, as a con-
sequence of the considerations of Sec. II, to the following
transformation law of the fields QA under a left translation:

Q) (x') = D, B(h(g,x))S (h(gx))(Qp ) (x)

(Z =g2). (5.8)

For reasons that will become apparent, we shall call 0. Ya
covariant derivative of ¥. [For the present, observe only that
Q . ¥ is constructed from the field ¥ on G /H and its deriva-
tives d; and that Q ¥ transforms under the group G of left
translations homogeneously, in spite of the fact that the
transformation matrix.S (4 (g,x))is x dependent. These prop-
erties are characteristic of a covariant derivative. ]
Finally, note the relation

M, =D,%0)05, (5.9)

which is a direct consequence of the definitions of the opera-
tors M, and Q,.

Vi. A CONNECTION ON G/H

We define the connection on G /H, associated with the
group G of left translations, to be the pullback of the
Maurer—Cartan form,

I'=0%6. (6.1)
Since 7o =.l, the components of o(x) have the form
o™ (x) = (x',0™ (x)). The section is determined by the func-
tions 0™ (x). In terms of components, the definition (6.1)
has the more explicit form

L4

=0M,RMA(U) =RiA(a) + a'"lRmA(a) *

(6.2)

In particular, the components of the translational part of the
connection are
4*=I"=R, (o). (6.3)

The inverse (&,°) of the matrix (é,%) provides a set of com-
ponents of a vielbein on G /H. Since we are interpreting G /H
as a space-time, they are the components of a tetrad.

Let us define the matrices

I, =I'*G, =&°G, + G, , (6.4)
where the G, are the generators of any matrix representa-
tion S of G. In terms of the matrices (6.4), the definition
(6.2) can be written as I'; = o™ ,R,,* (0)G,. But from
(3.7) we have R, (0)G, =8 ~(0)5.4,(0), s0

I, =08 " (0)S, (o) =S ~(0)3,8(c) .

So we can write, symbolically without reference to a particu-
lar representation,

I,=0""'d0. (6.5)

Since the Maurer—Cartan form is left invariant, and
since the section is not changed when a left translation is
apphed the connection I" is left invariant,

=T (2 =g2).
Therefore

(6.6)
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i do(x)

Io“,.'(x’) = fi (x') =(o(x"))” —
ax

= %(ha—‘g“)aj (goh ~ 1)
29
axj -1 -1 —1

=T(h(0' doYh ~' +hdh 7).
xll

The transformation law of the components of I" under a left
translation, under which they remain invariant, is therefore

o o J o
B(x) =1 (x) =%(hl“jh ~1_ghh™Yy, (67)

where
h=h(gx) (6.8)
is given by (2.2).
An alternative form of this transformation law is
Ay =4
= 9%\ B(x)DAh )
axn
+8j(h“)’"-Rm‘(h ). (6.9)

That this is equivalent to (6.7) can be verified as follows.
Multiply (6.9) by G, and apply (3.8) to the first term. For
the second term, we employ (3.7) in the form R,*
G, =S ~'S. ;. This implies
3,(h~H™R,A(h "G,
=d;(h “HYmS(h)a, S(h~Y) =S(h) d,S(h -1,
Equation (6.9) has now become
I/ (x) =Fi(x)
ax’ s -1 —1
= F(S(h)rj (x)Sh=H)+Sh)aSh ),
x
which is just (6.7) evaluated for a particular representation

Sof G. A direct derivation of (6.9) is rather more complicat-
ed. We have

I:’_:A(x,) = fiA(x’) =%2RMA(U(JC'))
; —1
- g; "‘g‘;’;j Y Ryt o (x)
and
d(goh M A '
_axf—RM (o(x)

_9(oh YN J(goh '
ax’ Aah ~W
_ dof A(och YW + ath—'y" d(ah ~1)YY
Ix’ do* ! A H™
X [R ~Y(oh ~H)R(goh " NNYR,o(x")).

Ry (o(x")

The transformation law (6.9) implies the transformation
law

O 82D,k ) (6.10)

&i(x')=¢%x") =

for the tetrad components, under the action of a left translation.
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The Maurer—Cartan equation implies a zero curvature
for the connection on G /H,

LA =g+ 121 %pc" =0. (6.11)

Proof: Let R4, n (o) denote dy R %, evaluated at o(x).
Then

3,11 — 3,14 = 3,(0™ ;R %(0)) — 3,(0™ R 4 ()
=M, 0" (R 4.5 (0) — Riyp(0))
=0™,0" R 3 (0)R 5 (0)epc?
=121, %y .

We are now in a position to obtain a more explicit

expression for the covariant derivative 0 Y of afieldon G/
H. We have

0,9 =0*(R,¥) =R, M)V ,,(0), (6.12)

where V., (o) denotes d,, ¥ evaluated at the point o(x), so
that

0¥ =9,¥ (o) = (3;,0™)V 4, (0)
— W, (0) + 0™V, (0) . (6.13)

Differentiate the fiber condition ¥(z) = S(h)¥(zh) with
respect to 4° and set h=e. We got 0=G,¥ + R, ¥
=G,V + R, ™ 3,,¥ (where the G, are the generators of
the matrix representation S of H). Hence

V. (0)= —R,(0)G,¢. (6.14)
By substituting (6.13) and (6.14) into (6.12), we find
Q.¢=D,9=¢,Dy, Dy=3y+1Gy, (615)
and . _

QY= -Gy (6.16)

Observe that, although D, looks like a convariant deriva-
tive associated with the group H, in general it is not. This phe-
nomenon was encountered already in our earlier work.?! The
present fiber bundle description gives a much clearer geometri-
cal insight into what is happening. The Q,, ¥ and Q, ¥ are two
pieces of a single geometrical entity, which transforms accord-
ing to the transformation law (5.8). Only when G/H is reduc-
tive do these two pieces transform independently and in that
case D,y transforms like a true covariant derivative for the
subgroup H of the group G of left translations.

VII. METRICS INDUCED ON G/H

In certain circumstances the diffeomorphisms induced
on G /H by left translations on G are closely related to natu-
rally arising metrical properties of G /H.

The most straightforward case arises when G is semi-
simple, so that the Cartan metric 7,5 has aninverse y*2, and
in addition the submatrix ¥*# is nonsingular (we shall de-
note its inverse by 7,5 ). We can in that case define a nonsin-
gular rank 2 tensor field on G /H,

g= VABLA iLBj = YABRA iRBj = YaﬂRaiRBj = Vaﬂéa iéﬁj'
(7.1)

Since the quantities L, depend only on x, the g; are indeed
uniquely defined on G /H. The fact that the vectors R, are
left invariant ensures that the g7 are invariant under the
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diffeomorphisms induced on G /H by the left translations.
These diffeomorphisms are therefore isometries for the met-
ric on G /H with components g, = &,%é,°7,5. The L’ are
the components of a set of Killing vectors on G/H. The
transformation law of the metric of G /H under left transla-
tions (under which the components remain invariant) is
, L. OxF gx

8y(x") =gy (x") ="a)7$,jgk1(x) .
An example of an induced metric of this kind is the metric of
de Sitter space G /H, where G is SO(4,1).

If the conditions on G that lead to the above construc-
tion of a metric on G /H are not satisfied, there may neverthe-

less exist a constant nonsingular matrix 7,4 such that?!

D, (h)Dp®(h)1,5 =p(h) 15 (73)

for every heH (p is therefore a one-dimensional representa-
tion of H). In that case we can regard

8 = éiaéjﬁnaﬂ (7.4)
as the components of a metric on G /H. It is left invariant
because the tetrad is; under left translations g'; = g;;. But
the diffeomorphisms on G /H induced by left translations are
not, in general, isometries because the transformation law of
g; under left translation is not the usual tensor transforma-
tion law (7.2). The transformation law (6.10) of the tetrad
gives

(7.2)

e
ox" ox"
In the simplest case, p = 1 and the left translations induce
isometries. An example of this is the action of the Poincaré
group on Minkowski space. More generally, the left transla-
tions induce conformal mappings on G /H. Examples are the
action of the conformal group SO(4,2) on Minkowski space
and the action of the conformal group SO(4,2) on de Sitter
space. These two cases are related by a X transformation.

Finally, there are cases in which a metric cannot be in-
duced on G /H by the above method because no 7, with the
required property exists. An example of this is the action of
the affine group on space-time.

(7.5)

gy(x) =g;(x) =p~ (h(gx)) 8 (%) .

VIll. GAUGING THE LEFT TRANSLATIONS

Up to this point, we have dealt only with the formalism
associated with the ungauged group G of left translations.
We shall now introduce those diffeomorphisms on G that
can be regarded as the gauged generalizations of left transla-
tions.

Observe first that the (ungauged) left translations are
just those diffeomorphisms z—z’ on G that satisfy

2'go = (28,)’, (8.1)

We now define a gauge transformation to be a bundle
automorphism, that is, a diffeomorphism z—z’ on G that
satisfies

z’h = (zh)', for all heH . (8.2)

(This concept of gauge transformation appears in the work
of Atiyah, Hitchin, and Singer,>! but we have abandoned the
requirement that the action induced on base space shall be
trivial.)

for all g,eG.
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It then follows that the gauge transformations are just
those diffeomorphisms on G of the form

Z=g(x)z, (8.3)
where x = 77z and g(x) is a G-valued function on G /H. [As
proof, define g(z)=zz"' Then (83) implies

g(2) = g(zh), for all heH. So g(z) is constant on each fiber.
We have a G-valued function g(x) = g(z) on G/H.]

Observe that the form (8.3) of a gauge transformation is
in agreement with the elementary concept of gauging a sym-
metry group, due to Yang and Mills; the group action is
generalized by allowing the group elements to be space-time
dependent.

Itis important to note that not every G-valued field g(x)
on G/H defines a gauge transformation through (8.3). In
general, a mapping on G of the form (8.3) will not even be
one-to-one.

The geometrical meaning of (8.2) is that the gauge
transformations are those diffeomorphisms on G that map
fibers to fibers and preserve the action of the structural
group H of G(G /H,H). That is, two points on the same fiber
related to each other by right multiplication by heH will
have two images related in the same way.

The prescription (2.2) generalizes immediately to the
case of a gauge transformation. Simply replace g by g(x) in
(2.2). Figure 1 now illustrates this more general situation.
In other words, a gauge transformation induces a diffeomor-
phism x-x’ on G /H and specifies a unique H-valued field
h(x) on G /H, through the prescription®”

h(x) =(o(x")) 'g(x)o(x) . (8.4)

Conversely, any diffeomorphism x—x' on G/H together
with any H-valued field 2(x) on G /H determine a unique
gauge transformation 2’ = g(x)z, through the prescription

g(x) = o(x)Ya(x) (@(x))~". (8.5)

In Sec. II we obtained the transformation law of a field ¢
on G /H, defined as the pullback of a scalar field ¥ on G
satisfying a fiber condition. This transformation law general-
izes immediately: the transformation law of ¥ under a gauge
transformation is simply

P (x') =Sh(x))(x) . (8.6)
Consider now the infinitesimal gauge transformations.
We have already seen that an infinitesimal (ungauged) left

translation z’™ = z% — AM is generated by an infinitesimal
vector A that is right invariant,

[R,A]=0, (8.7)
or, equivalently,
A=a'L, (a* const). (8.8)

An infinitesimal gauge transformation is generated by an
infinitesimal vector A that is invariant under the right action
of the subgroup H,

[R.,A] =0, (8.9)
or, equivalently,
A=d'L, (@ =d'(x)). (8.10)

The effect of an infinitesimal gauge transformation on
the points of G /H and on the fields ¢ on G /H is obtained as
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follows. Define A = A™ (o). Then the diffeomorphism
x—x'induced on G /H by an infinitesimal gauge transforma-
tion zM=2z" —AM =M —ag* (x)L,M is x''=x' — A’
(note that A’ is dependent only on x anyway, so in fact
A! = A’). The transformation law of a scalar field ¥ on G is
oW =AM 3,V so the infinitesimal form of (8.6) is
S5 = o*(AM 3, V) = a* M 9. Alternatively, regarding
the AM as the (space-time-dependent) parameters rather
than the a*, 8y = AM V¥ ,, (o). Employing formulas (6.13)
and (6.14) we find

Sy =40y —€G,y, (8.11)

where
E€=UM—20M )R, (o) =A™ —A"0" )R, (0).
(8.12)

The form (8.11) of the transformation law of i emphasizes
the fact that a gauge transformation consists of a general
diffeomorphism on the space-time G /H together with a
space-time-dependent element of H. The geometrical expla-
nation of the peculiar form of the parameters €° is given by
Fig. 2; the vector A can be built up from a component tangen-
tial to the section and a vertical component €. The €° are the
anholonomic components of €.

IX. DIFFERENTIAL GEOMETRY OF A VIELBEIN

Asa preliminary to the construction of a connection and
curvature associated with our gauge transformations, we
shall consider the differential geometry of a vielbein field on
a differentiable manifold.

Denote the coordinates of the general point of a mani-
fold by z* (M,N holonomic indices; A4,B,... anholonomic in-
dices). Let E be the matrix of components E, ™ of a vielbein
and denote the matrix elements of E ~!by E,,* . The vielbein
vector fields are E, = E,™ d,, and the dually associated
one-form fields are E4 = dz™ E,,*. The components  ,, €
of the “object of anholonimity” are defined by

[EfEp] = Q. Ec . (9.1)
Using the vielbein components to convert anholonomic in-

dices to holonomic indices and vice versa, in the usual way,
we have

O Ent — OyEpt = — Qupt. (9.2)

Under the action of an infinitesimal diffeomorphism z’™
=z" — AM, the transformation law of the vielbein is

6E, = [A,EA] , (9.3)
which leads to
S8E, " = D A (9.4)
where
AM
T
a\(xf o) FIG. 2. The geometrical explanation of the
AioM ~ form of the parameters €.
a1l
X X
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Dy A =3y A + APQ, 4 . (9.5)

Observe incidentally that the Q,,;* are the anholono-
mic components of the linear connection whose holonomic
components are

FMNP= (aNEMA)EAPz —'EMA aNEAP- (9'6)

The operator &, is then a covariant derivative operator.
We have, for example, for a contravariant vector A7,

DyAP =3y A" + AT, 7. 9.7)
The linear connection (9.5) has vanishing curvature but
nonvanishing torsion Q,,,*. With respect to this connec-
tion the manifold is a “space of distant parallelism.”

When the manifold is the manifold of a Lie group G, the

fields G,5€ = Q5 — ¢, are of particular importance.
We have

[EA ’EB] - CABCEC = GABCEC (9.8)
or equivalently,
OmEN" — InEp" + EMBENCCBCA = —Guy*. (9.9

Note that G,,,* vanishes for the right vielbein. The trans-
formation law (9.4) can be rewritten in the form

6EMA = ANGMNA + VMAA ) (9. 10)
where
VoA =3y A* — APE,, Sepct. (9.11)

X. CONNECTION AND CURVATURE FOR THE GAUGE
TRANSFORMATIONS

We shall now show how the formalism of our earlier
work?! on the gauging of a group G of space-time and internal
symmetries arises as a particular case of the fiber bundle geom-
etry.®

Define a connection on G(G /H,H) to be the set of one-
forms E* dual to a vielbein £, on the group manifold G, satis-
fying the following two conditions.

(1) The vielbein satisfies the same fiber condition as the
right vielbein, namely

E, =D,’(h)E, (Z =zh),
for every heH [see (3.16)].

(2) The vertical vectors of the vielbein are the same as
those of the right vielbein (E,* = R, ™). Thus in a canonical
reference system the components of the specialized vielbein and
its dually associated connection are

E, E,” E“~ E°
E/:((‘; R"')’ EMA=(0 2 ) (10.2)

(10.1)

The above two conditions are gauge invariant. The
gauge invariance of (1) follows simply from the fact that
gauge transformations, by definition, commute with the
right action of H. Condition (2), E, = R, transforms to
E, =R/ (under a gauge transformation z—z'). But by
(8.9), the R, are invariant, R, =R, .

We call the set of two-forms whose components are
G the curvature associated with the connection E4 . The
infinitesimal form of the transformation law (10.1) is
[R,,Ez] =c,s“Ec. Since R, =E,, this implies that
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G,5¢ = 0. Therefore G,y = EAE%G,3€ = 0. Thus the
only nonvanishing components of the curvature are G;*.

We define the connection on G /H to be the pullback of
the connection on G,

I'=o*E“. (10.3)
Its components are

I*=0" E,*0o). (10.4)
In particular,

e, =T *=E*"(0) (10.5)

defines a tetrad on the space-time G /H. Because of the con-
ditions (1) and (2), the E,,* are completely determined by
the T4,

We define the curvature on G /H to be the pullback of
the curvature on G. Its components are

o™.,0" ;Gryy?(0) = G4 (o) . (10.6)
Observe that
3T, =3,(0™, Ep ()
=0M By (0) + o™ ;0" [E4y n(0) .
So
AT — T A=0™,0" (E%n(0) — Efp(0))

Therefore the components of the curvature on G /H are giv-
en by

AT A—dT A+ T T, %" = — G, (10.7)

[it is convenient to drop the argument, writing simply G;*
to mean G;* (o) ].

Denote the components of the pullback of the object of
anholonimity by F, 5 €. The quantities F;* and F;” defined
by

FAA

A = e,e, Fy, (10.8)

are the components of the H torsion and the H curvature.?!

The infinitesimal vector field A™ that generates an in-
finitesimal gauge transformation has anholonomic compo-
nents A* = AME,,*. Since this vector field is invariant un-
der the right action of H, it is completely determined by
either A® = AM (o) orby A1 = A* (o), either of which can
be regarded as the set of (space-time-dependent) parameters
of the infinitesimal gauge transformation. The transforma-
tion law for the components of the connection on G /H under
an infinitesimal gauge transformation are now easily found.

We have 8T = o™ SEM* = o™ A% 4, (0) — A BT °Fp?
(from 9.4). Therefore
=911, (10.9)

where

DA*=9A* — AP, CF " . (10.10)
An alternative form of (10.9) is

ST A=V,A4— 217G, (10.11)
where

VA4 =3,44— AT cpc* (10.12)
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(notethat ' = A%e,"). An alternative set of parameters for an

infinitesimal gauge transformation consists of the A’ and the
components €* of the vertical vector introduced in (8.12) and
Fig. 2. We have

=AM -2 0M)DE A(0)=A1—ATA (10.13)
{which satisfies €* = 0). This relation appeared already in our
earlier work. The fiber bundle formalism gives it a very clear
geometrical meaning. In terms of these parameters,

STA=AIGT A+ (GANTA + Vet (10.14)

This shows that I';* transforms like a one-form under the
diffeomorphism on G /H induced by a gauge transformation,
and “like a Yang—Mills potential for an internal symmetry
group G " under the action of the H-valued field on G/H
associated with the gauge transformation. The transforma-
tion law under a finite gauge transformation is therefore a
straightforward generalization of the transformation law
given in Sec. VI for the “trivial” connection I" under left
translations. A finite gauge transformation consists of a gen-
eral diffeomorphism x—x’' on G /H and an H-valued field
h = h(x) on G /H, according to (8.4). The transformation
law of the components of the connection on G /H is

I“',f’(x’) =§'§_IIT(FjB(x)DBA(h —1)
X

+3d;(h"H™R, (R 7)), (10.15)
or equivalently, for I'; = I','G, = ¢,°G, + I',°G,,
Pt Ix’ —1 -1
[(x)=——L(x)h "' =9hh~").  (10.16)
axu
In particular, the tetrad transforms according to
P ey x! g agy ~1
e (x') =——¢ (x)Dg"(h ™). (10.17)
ax’
The transformation law of the curvature G;* on G /H is
ax* ox'
G (X)) =——"G®Dp*(h ") (10.18)
a 12 a ’j Kl B
or equivalently, for G; = G, G, = G;°G, + G;°G,,
ax* Ix’ _
G', g (x )_3—'—'-6 th,]( x)h (10.19)

It can be shown that if G/H is reductive, the F;* transform
like the G;#. Otherwise, they have a complicated inhomo-
geneous transformation law. If the translational part of the
Lie algebra is Abelian, then F; = G;.

In cases when a nonsingular matrix 7,4 satisfying the
conditions of Sec. VII exists, if follows from (10.17) that the
transformation law of the G /H metric g; = e,%;7,5 is

ax* 9x
~ a — & (x).

o o (10.20)

gi(x)=ph ") =—

Thus, in general, in such cases gauge transformations induce
Weyl (scale) transformations on the space-time metric, as
well as diffeomorphisms.
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XI. THE GENERALIZED COVARIANT DERIVATIVE

The covariant derivative operator associated with (un-
gauged) left translations introduced in Sec. V is readily gen-
eralized to a derivative operator covariant under gauge
transformations. We simply define

Q¥ =0%(E,Y). (11.1)

Since the E, satisfy a fiber condition, the action of @, on
Qg ¢ is well defined, and in fact Q,Qp ¢ = 0*(E Eg V).
Then (9.1) and (10.8) imply

[QA’QB] =FABCQC’ (11.2)
or, more explicity,

[Qa’QB] zFaByQY +FchQc ’

[Qa’QB] =caﬂYQ1/ +caﬂch 1 (113)

(0@ ] =¢up Q. -
In the particular case of Poincaré gauge theory, this “gener-
alized Lie algebra” is already well known.'® The arguments
that led to (6.15) and (6.16) now provide the following ex-
plicit expressions for the generalized operators Q,, :

Q.¥=D,y=e,Dy, DY=3¥+T,G.¥,
Qa¢= —aaiﬁ .

The covariant transformation law of @, under a gauge
transformation is a straightforward generalization of (5.8),
(Q4¥)' (x') =D, P(h)S(h) (Qs¥) (x) . (11.5)

The transformation law (8.11) of ¢ under an infinitesi-
mal gauge transformation can be reexpressed in terms of the
parameters A4. We have 6y = o0*SV¥ =o*(AE,V)

= A10*(E, V). Therefore

Y =1"Qh=1°D,h —A1°G.¢.

(11.4)
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