Gauge theory of a group of diffeomorphisms. ll. The conformal and de Sitter
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The extension of Hehl’s Poincaré gauge theory to more general groups that include space-time
diffeomorphisms is worked out for two particular examples, one corresponding to the action of
the conformal group on Minkowski space, and the other to the action of the de Sitter group on
de Sitter space, and the effect of these groups on physical fields.

I. INTRODUCTION

Inarecent work' (which we shall refer to as I) a scheme
was developed for gauging a group that contains a group of
space-time diffeomorphisms as well as (possibly), internal
symmetry groups.

Let G be an (N + M)-parameter Lie group possessing
an N-parameter subgroup H. Introduce, on an M-dimen-
sional base manifold, a connection I'; associated with the
group G, considered as a Yang-Mills group, and a set of
physical fields ¢ belonging to a linear representation of H.
Under the simultaneous action of an infinitesimal diffeomor-
phism x’ -x’ — &' on the base space, and an infinitesimal
(local) action of H, we have

oI, =¢/9T,+T;0,£’+ &+ [EL,], (1.1)
Sy=£&/9y+ &, (1.2)

where € is an infinitesimal element of the Lie algebra of H,

dependent on position on the base manifold. Of course, in

(1.2) the representation of H provided by ¢ is implied.
When the curvature

G, =4I, — T — [T, I}] (1.3)

vanishes, those transformations (1.1) and (1.2) that leave
invariant a particular solution T'; (x) of (1.3) constitute an
(N + M)-parameter group of diffeomorphisms on the base
space, isomorphic to G. The finite-dimensional linear repre-
sentation of H corresponding to the action of H on # is there-
by extended to the action on ¥ of a group G of diffeomor-
phisms.

The purpose of the present work is to illustrate this idea
by two particularly interesting special cases.

When G = SO (4,2), we obtain the action of the confor-
mal group on Minkowski space together with the appropri-
ate transformation laws for physical fields under the action
of the conformal group.? When G = SO(4,1) we obtain the
action of the de Sitter group on de Sitter space-time together
with the appropriate transformation laws for physical fields.
Equations (1.1) and (1.2) in this latter case give rise to the
basic transformation laws of Poincaré gauge theory, under
the Wigner-Inonii contraction of the de Sitter group to the
Poincaré group.

Il. THE CONFORMAL GAUGE THEORY

The commutation relations for the generators of
SO(4,2) can be displayed in the following form:
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[7arms] =0,

[7arSey ] = Nap™y — Nay g5
[Va’Kp] =2("7apA—Sup); @1
[Saﬂ»‘g;é ] = ”Bysaﬁ - ﬂaysﬂa + ”a&sﬁy - "B&Sari
[saﬁ’A] = 0’ [Sﬂﬁ’x‘r] =Kq ”ﬂ'r - KB”ay’

[A’Ka] =Ky [Ka:Kﬂ] =0,

[7g,A] =7y,

where 7,5 is the Minkowskian metric with signature

(++ + =)
The connection for SO(4,2) can be written

T, = e %mr, + F,-, (2.2)
where
Fi = iriaﬂsap + &:A + ¢,%,. (2.3)

The matrix (e; ) is assumed to be nonsingular, with inverse
(e.'), which can be regarded as the matrix of components of
a tetrad. We may employ these matrices to convert Latin
(holononic) to Greek (anholononic) indices and vice versa.
The Minkowskian metric 77,5, will be employed for raising
and lowering Latin indices.

The infinitesimal element € of the Lie algebra of H can
be written

E=1€"S,5 +EA+EK,. (2.4)
The transformation law (1.1) then has the explicit forms

5€,a=§jaje,~a+eja a]é‘j—eip(eﬁa"'apa;)’ (2'5)
8T, =49 T, + T, 3,8/ +dE+ [&T)]
—2e(EgA + £ %S 5)- (2.6)

Observe that the tetrad undergoes Lorentz rotation and dila-
tion under the action of H. Observe also that, due to the final
term in (2.6), I'; is not a connection for the group H.

At this stage it is possible to impose a metric on the base
space (space-time) in a natural way. We define the space-
time metric to be the one with respect to which the tetrad is
orthonormal:

8 = eiaejﬂ"?aﬂ~ 2.7

Under the local action of H, this metric responds according
to

og; = — 2g;- (2.8)
Thus, the subgroup of SO(4,2) generated by A can be identi-
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fied as Weyl’s group of scale transformations.

It is also possible to impose a holonomic linear connec-
tion on space-time. We introduce the generalized derivative
of the tetrad field (see I):

Die*=4d,e," + ejBF,-ﬂ" +¢,%¢;, (2.9)
and then define
T,*=e,"D;e. (2.10)

The I';* transform under space-time diffeomorphisms like
the components of a linear connection. Moreover, it is a met-
ric-compatible connection:

akgij - rkilglj - ijlgil =0.

Under the action of H, it has the transformation law
8T, =2(5%g, — 6,5, — 8,¢.). (2.12)
We now consider the limiting case with vanishing

SO(4,2) curvature:

G, =0. (2.13)

The coordinate system and H-gauge can then be chosen so
that

e*=8° T,=0. (2.14)
We then see from (2.7) that the space-time has become Min-
kowskian. In this reference system, the distinction between

Latin and Greek indices is lost and the conditions for the
transformations (1.1) to preserve the relations (2.14) are

8,6% =€, + (8,
3,6 =2(8,°¢* — 5,°¢7),
8,6=2,, 8,£%=0,

[cf. Eqs. (8.2) of I]. The integration of these equations is
straightforward. We get, successively,

§e=1c% §=2'caxa+/7a

(2.11)

(2.15)

(2.16)
€ = 2(xPc* — x°c?) + w*®,
and finally
£%=a"+ x,0™ + px* + 2x %c'x — ¢°X?, (2.17)

wherea®, p, »*#, and ¢® are constants of integration; x> and
c-x denote x*x? 77,5 and ¢* x#7),,5, respectively. We recog-
nize that the diffeomorphisms x* —x% — £* are the infinite-
simal conformal mappings on Minkowski space-time.

The transformation law (1.2) for a field ¢ becomes

Sy =£3,¢+ (S5 + EA + £ %)Y, (2.18)

with €%, €*#, £, and £* given by (2.16) and (2.17). Thus we
have precisely the transformation law of a physical field on
Minkowski space-time, under the action of infinitesimal
conformal transformations:

6¢ = [aaaa + %waﬁ(saﬁ + xa 35 - xﬁ aa)
+p(A+x9,) + %k, +2(x,A + x5S 5)
+ 2(x,x? — x%85)35) 19 (2.19)
The reverse of the procedure carried out above is to start
with the (global) action of the conformal group on Minkow-
ski space and on fields ¢ [given by (2.17) and (2.19] and
then “gauge” the group by making the parameters space-
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time dependent and introducing auxiliary fields. That is, the
conformal group can be gauged in a manner analogous to
Kibble’s** gauging of the Poincaré group. The details have
been presented elsewhere.’

lil. THE DE SITTER GAUGE THEORY

The commutation relations for the generators of
SO(4,1) can be displayed in the form

[Tassg ] = — &Sups

[ﬂ'a’sﬁa] =17GB7T‘V ‘-na‘yﬂﬁ’ (3.1)

[SapsSys ] = MaySas — NaySes + NasSpy — MpsSay-
The subgroup H, generated by the S,4, is just the Lorentz

group. The constant « is inserted so that the Poincaré group
can be regarded as a limiting case.

Introduce the connection
T, =7, +} T, %S, (3-2)
The transformation law (1.1) becomes
Se* =£713,e,% + ;% ;&7 — e,Pe,”, (3.3)
0P =69, P+ T, 8.6/ +de.”
+¢€,' T, —T,%,° (3.4)

(in which the Minkowskian metric has been used for raising
and lowering Greek indices). Observe that the tetrad is Lor-
entz rotated by the action of H and that I'";*? transforms like
a connection for the Lorentz group. We shall employ the
symbol D; to denote the corresponding covariant differenti-
ation. For example,

Dp=a¢y— 4 riuﬁsaﬂ'/’
and
D.e,* = 3d,e,% + ¢,°T 5"
The Lorentz torsion and Lorentz curvature are defined by
F,*=Die*— D5, (3.5)
and
Fy, =01, -9, —T,T,P+T,,T,? (36)
The SO(4,1) curvature is
G; =F;*m, + 1 (F;*° + 2xe,%¢,)S 4. (3.7

A holonomic metric and holonomic connection on
space-time can be constructed in a natural way from the
SO(4,1) connection coefficients. We define

8y =e€:°¢ g (3.8)
and

I*=e,*D,e. 3.9)
The connection (3,9) is metric compatible, that is,

3:8x —Ty'gn —Tu'g; =0. (3.10)
It is not, in general, symmetric:

r;*—T*=F (3.11)

Thus, the definitions (3.8) and (3.9) impose on the space-
time a U(4) structure® [in fact, as is apparent from (3.3)
and (3.4), the gauged de Sitter group and the gauged Poin-
caré group are identical].
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Now consider the limiting case in which the SO(4,1)
curvature (3.7) vanishes. The torsion then vanishes, so the
connection (3.9) becomes the Christoffel connection

e
y
The Lorentz curvature (which is now just an anholono-
mic version of the Riemann tensor constructed from g;)
does not vanish. We have

R,jkl=E7k1=l('(5,~15jk—5j16,~k)- (313)

Thus, the space-time has become a space of constant curva-
ture. We can therefore choose the coordinate system to be a
system of stereographic coordinates for which

(3.12)

gy =021y, (3.14)

o=1/[1+ (kx*/4)], x*=mn;x'x. (3.15)
We can then take the tetrad components to be

e,* = 068,” (3.16)

It is convenient from now on to convert Latin indices to
Greek indices, and vice versa, by means of 87 rather than ef".
With this understood, the Lorentz connection determined
by (3.9) and (3.12) turns out to be

I,% = kobl°xP). 3.17)

The transformations (3.3) and (3.4) that leave un-
changed these particular functional forms for the tetrad and
Lorentz connection are those with parameters £ and ¢
satisfying

3°EP — YKok xn™ —eF =0, (3.18)
and
3,6 + Y ko[8,°(£P + ¥x,) — /(£ + €x,)] =0.
(3.19)

Fortunately, we already have partial knowledge about the
solution of these equations. The diffeomorphisms that pre-
serve the de Sitter metric are the de Sitter transformations,
which, in terms of the stereographic coordinate system, have
the infinitesimal form x* »x% — £%, where

£%=xp0P + a%(1 — (kx*/4)) + (x/2)x%a"x; (3.20)
®*? and a® being the (constant) parameters of the group.
Substituting this expression into (3.18) gives

€ = 0™ + (k/2)(a°%® — aPx”). (3.21)

It is then not difficult to check that Eq. (3.19) is also satis-
fied.

Equation (1.2) now gives the transformation law for a
physical field (belonging to a representation of the Lorentz
group) under the action of an infinitesimal de Sitter trans-
formation on a de Sitter space-time:

2
8¢ = a“[(l - %-)aa + %;.c,,xﬂa,9 + %saﬁxﬁ]zp

IV. CONCLUDING REMARKS

Many attempts to construct a gauge theory of a space-
time symmetry group encounter difficulties and complica-
tions. The reader is referred to the review article of Ivanenko

(3.22)
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and Sardanashvily” and the references cited therein. The dif-
ficulties arise from attempting a too close analogy with the
pattern established by gauge theories of internal symmetries;
if the whole of a space-time group G is “gauged” in the
Yang-Mills sense, the gauged “internal translations” des-
troy the possibility of identifying the translational gauge po-
tentials with a tetrad.”® In our view, in a correct approach to
gauging a space-time symmetry G, only the subgroup H is
localized in the Yang—Mills sense; the gauged generalization
of G in our scheme consists of a local action of H together
with general diffeomorphisms [or alternatively, general co-
ordinate transformations (GCT)] on space-time M. This
viewpoint is already implicit in the de Sitter gauge theory of
MacDowell and Mansouri,® where invariance of the Lagran-
gian only under local Lorentz transformations and GCT was
imposed. The geometrical background to the MacDowell
and Mansouri de Sitter gauge theory corresponds to our
scheme [ where G is the de Sitter group or its covering group
Sp(2,2)].

That the local action of H together with general diffeo-
morphisms (or GCT) on M does indeed constitute a true
gauge theory of a space-time group G is fully justified only
when one has shown that the limiting case of “ungauged”
transformations does in fact correspond to the correct global
action of G on M and on fields in M. The purpose of this work
was to demonstrate that this is so for the conformal group,
the de Sitter group, and (by Wigner-Inénii contraction of
the de Sitter case) the Poincaré group. The “ungauged” lim-
it of Poincaré gauge theory was obtained by Hehl.® The
gauging of the affine group in accordance with our scheme
has been presented elsewhere.®

The transformation laws for the points x of M and the
matter fields ¢ on M, under the global (“ungauged™) action
of G constitute essentially a nonlinear realization of G in the
sense of Coleman, Wess, and Zumino'® or Salam and Strath-
dee.!! However, space-time itself takes the place of the Gold-
stone fields, so the usual dynamics of nonlinear realization
(Higgs mechanism, spontaneous symmetry breakdown) is
not called into play. Thus, our scheme differs radically from
that of the Poincaré and de Sitter gauge theories of Tseyt-
lin,'? in which the whole of G rather than just H acts “inter-
nally,” but the usual difficuities associated with such a
scheme are avoided by realizing the translations nonlinearly.
This nonlinear realization of G is associated with spontane-
ous symmetry breakdown, the broken symmetries being the
internal translations.

The relationship between our approach to the gauging
of space-time symmetries and that of other approaches be-
comes clearer when our scheme is expressed in the language
of fiber bundles. It is clear from our foregoing remarks that
only the subgroup H should act on the fibers, not the whole
of G (“no internal translation”). The simplest and most nat-
ural translation of our scheme into fiber bundle language
consists of expressing the gauge theory of a group G involv-
ing space-time and internal symmetries in terms of the group
manifold G; specifically, in terms of the principal fiber bun-
dle G(G /H,H) where the coset space G /H is space-time"*
(note that H, not G, is the structural group). This aspect will
be dealt with in a subsequent paper.
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