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Any (N + M)-parameter Lie group G with an N-parameter subgroup H can be realized as a
global group of diffeomorphisms on an M-dimensional base space B, with representations in
terms of transformation laws of fields on B belonging to linear representations of H. The
gauged generalization of the global diffeomorphisms consists of general diffeomorphisms (or
coordinate transformations) on a base space together with a local action of H on the fields. The
particular applications of the scheme to space-time symmetries is discussed in terms of
Lagrangians, field equations, currents, and source identities.

I. INTRODUCTION

The theory of Yang and Mills' provides a prescription
for “gauging” an internal symmetry group. The linear action
of the group on physical fields is generalized from a “global”
action to a “local” action by the introduction of auxiliary
fields—the so-called Yang-Mills potentials or connection
coefficients for the group in question. This idea was applied
to the group of Lorentz rotations of an orthonormal tetrad
(in a metric space-time) by Utiyama?® and Sciama.” It is nat-
ural to regard the connection coefficients in this case as the
anholonomic components of the linear connection of the
space-time. The holonomic linear connection is then metric
compatible and asymmetric (the space-time is a U,, in
Hehl’s terminology*).

The Poincaré group (group of isometries of Minkowski
space-time) lies outside the scope of the original Yang-Mills
theory because it acts on the space-time as well as on physical
fields. Nevertheless, as was shown by Kibble,’ it can be
gauged. The auxiliary fields consist of a tetrad and a connec-
tion for the Lorentz rotations of the tetrad. The action of the
gauged Poincaré group is the action of general coordinate
transformations (or, interpreted actively, space-time diffeo-
morphisms) together with Lorentz rotations of the tetrad. It
is natural then to define the space-time metric to be the one
with respect to which the tetrad is orthonormal and to define
the linear connection of the space-time to be the one arising
from the Lorentz connection. We obtain again the U, theory
of Utiyama and Sciama. However, the tetrad and the general
coordinate transformations arise out of the gauge principle
in Kibble’s approach; moreover, the metric (and not just the
linear connection) is constructed from the auxiliary fields—
in the Lorentz gauge theory of Utiyama and Sciama, the
tetrad, the metric, and the general coordinate transforma-
tions were presupposed ab initio and were extraneous to the
gauge principle.

The effect of an infinitesimal space-time diffeomor-
phism (or general coordinate transformation) on an anho-
lonomic field (i.e., a set of scalars that transform linearly and
homogeneously under tetrad rotations) is the same as the
effect of an infinitesimal parallel transport combined with an
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infinitesimal tetrad rotation. The work of von der Heyde®
and the subsequent developments of Poincaré gauge theory
by Hehl and co-workers* have revealed that it is this parallel
transport action, rather than space-time diffeomorphisms or
coordinate transformations, that should be regarded as the
translational part of the gauged Poincaré action. With this
interpretation, the tetrad is itself a set of Yang--Mills poten-
tials, constituting the connection for the translational sub-
group. The Yang-Mills “field strengths” are the torsion
(translational part) and the curvature (rotational part) of
the U,.

Kibble’s approach can be applied to more general
groups. Some general aspects of the gauging of space-time
diffeomorphisms have been worked out by Harnad and Pet-
titt.”

As was shown by Lord,® the gauge theory of the affine
group, together with a space-time metric imposed as an ex-
traneous field, is equivalent to a purely holonomic metric-
affine theory.® Of course, the affine extension of the action of
the Poincaré group on Minkowski space-time cannot be a
symmetry group for a physical theory, but that does not rule
out the possibility of the existence of gauge potentials for the
group. Indeed, there are some indications that the affine ex-
tension of Poincaré gauge theory may be the correct exten-
sion required for an understanding of the relationship
between strong and gravitational interactions.'® Poincaré
gauge theory has been treated as a limiting case of a de Sitter
gauge theory in the work of MacDowell and Mansouri."!
The gauging of the conformal group (group of diffeomor-
phisms of Minkowski space-time that preserve the light-
cone structure) is usually discussed in the language of fiber
bundles, employing second-order frames.'? As will become
clear from the present work, the concept of second-order
frames is by no means essential in a gauge theory of the con-
formal group.

Apart from the extensions mentioned above, there is
also the interesting possibility of extending the Poincaré
gauge theory so as to include internal symmetries in a nontri-
vial way.!?

For a more exhaustive survey of the literature on Poin-
caré gauge theory and its extensions, the reader is referred to
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the review article of Ivanenko and Sardanashvily. !4

We shall present a general geometrical framework that
includes the above-mentioned theories as particular cases.
The central idea is the following: Let G be an (N + M)-
parameter Lie group possessing an N-parameter subgroup
H. Let ¢ be a set of fields on an M-dimensional space B,
belonging to a linear representation of H. Then G can be
realized as a global group of diffeomorphisms on B together
with a representation in terms of transformation laws for ¢.
Moreover, this can be done in such a way that the gauging of
the global diffeomorphism group leads to a local transforma-
tion group consisting of general diffeomorphisms on B to-
gether with an intrinsic action of H on ¢.

Some aspects of our formalism have been foreshadowed
in the work of Harnad and Pettitt.” However, the present
work goes beyond the scheme of Harnad and Pettitt in sever-
al respects, and our approach is different. We do not begin
with a global group of diffeomorphisms and attack the prob-
lem of gauging it—we begin with a full-fledged gauge theory
and come to a global diffeomorphism group as a limiting
case.

Il. STRUCTURE OF THE GROUP AND ITS POTENTIALS

Consider an (N + M)-parameter Lie group G with gen-
erators 7, G, satisfying the commutation relations

[TasTs) = Cog™m, +€,5°G.,
[72sGs] = Cap™m, + €°G.,
[G.)Gs] =G

The Greek indices a,B,... are M-fold indices and the Latin
indices @,b,... are N-fold. The N-parameter subgroup gener-
ated by the G, will be called H. We shall also employ
(N 4+ M)-fold indices 4,B,..., in terms of which (2.1) is

[G4,Gr] =c45°Gc 2.2)
(wherer, =G,, c,," =0).

We shall set up a gauge theory of the group G on an M-
dimensional base space. We shall take M = 4 with a view to
the physical applications in which the base space is space-
time. However, it should be borne in mind that the geometri-
cal framework is valid for any M and thus has potentially
wider applications.

To begin with, we regard G as a group that acts on fields
over space-time but not on space-time points. The infinitesi-
mal action of G on a field ¥ belonging to a linear representa-
tion of G will be written

2.1)

Y = ¢V, (2.3)
where
€ =¢€'G, = €é“m, + €°G,. 2.4)

Here, 7, and G, denote the matrix representatives of the
corresponding generators.

The group G is gauged in the standard Yang-Mills way
be introducing Yang-Mills potentials, which are the coeffi-
cients of a connection

T, =G, = e, + T,°G,. (2.5)

The Latin letters J, j,... will be used for holonomic space-time
indices. The covariant derivative of a field ¥,
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V¥ =4¥-T,¥, (2.6)

transforms like ¥ under the action of an element of G with
space-time-dependent parameters provided the connection
has the transformation law

T, =V,e=3d,e— [T,€], 2.7
which corresponds to the transformation law
6F[A = Vlé'A = 3,6“ + GBFI CCBCA, (2'8)

for the Yang-Mills potentials. The Yang-Mills field
strengths are the coefficients of the curvature

G; =9,T; —airi = [ToT;]

= GﬁAGA o Gyaﬂa + GijaGa, (2-9)
which leads to
G,A=9,TA— 9, T — I,’T,Cpc. (2.10)

The fields strengths have a linear homogeneous transforma-
tion law

5G,j = [G,G,J ] ’ 5Gg‘4 = GBGUCCBCA
and satisfy the Bianchi identities
VG * =0.

(2.11)

(2.12)

Now let ¢ be a field belonging to a linear representation
R of the subgroup H. We write the infinitesimal transforma-
tion law of ¥ under the action of H in the form

8y = €°G,y, (2.13)

where the G, are the matrix representatives of the genera-
tors, in the representation R. In general, it is not possible to
extend R to a representation of G. Three particular represen-
tations of H, deducible from the structure constants of G, are
an (N + 4)-dimensional representation 7T, a four-dimen-
sional representation S, and an N-dimensional representa-
tion C (the adjoint representation of H), generated, respec-
tively, by the matrices 7, S,, and C, defined by

(TG)BC=CBGC’ (Sa)ﬁ"’:cﬁar’ (Ca)bc=cbac‘
(2.14)

(The relations [T,,T,] = c,,°T,, [S,,S,] =¢a°S., and
[CasCs ] = €., °C. are consequences of the Jacobi identities
for the generators of G.)

Observe that if

(2.15)

the representation T is just the direct sum of the representa-
tions S and C. The relation (2.15) holds, for instance, when
G is the Poincaré group, the affine group, or the de Sitter
group. If (2.15) does not hold, then T is reducible but not
completely reducible. An example of this is G = $SO(4,2), a
circumstance that leads to interesting special features for the
gauge theory of the conformal group.

The infinitesimal transformation laws for fields belong-
ing to the representations T, S, and C of H, under the action
of H, are, respectively,

84, =€c,bc, ¥ =€bcaber’
8, = €% Y. (2.16)
The contragredient representations 7, S, and C have the cor-

Cabc = 0,

E. A. Lord and P. Goswami 2416

Downloaded 14 Aug 2006 to 203.200.43.195. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



responding infinitesimal transformation laws
8¢t = — %", "= —€x"cpw”
SY* = — e"Yfe,”

Observe in particular that, if y,, transforms according to S,
we can extend it toa y, transforming according to 7, simply
by defining y, = 0.

Under the action of H, the Yang-Mills potentials of G
have the transformation laws

8¢, = — €%,"c,,°,

217

(2.18)

8T," = 8,6 + €T %, — €%¢,7c,,°. (2.19)

In regions of space-time where the 4 X 4 matrix (e¢;“ ) is non-
singular, its inverse (e,") specifies a tetrad field, which be-
longs to the representation S of H:

Se, = é€’c,,",’". (2.20)

We shall employ these matrices to convert holonomic in-
dices £, j,... to anholonomic indices “’»B.:-" (which are asso-
ciated with the representations S and S of H), in the usual
way. For example, y; = ¢;°y,, and ¥’ = y“e, ' are space-time
vectors, invariant under H.

The third term in (2.19) shows that in general the I';*
are not Yang-Mills potentials for H; they are Yang-Mills
potentials only if the condition (2.15) holds. Nevertheless,
we shall employ the T';° to define a parallel transport of a
field, and an associated generalized derivative

D,-1/J=5,~¢r—-r,-1//, fi =Fia60’ (2.21)
which is not a true covariant derivative (transforming like ¢
under the action of H) unless (2.15) holds. Nevertheless, it
plays a crucial role in our gauge theory of the group G. We
have shown elsewhere! how such a noncovariant derivative
arises when the conformal group is gauged following Kib-
ble’s method of gauging the Poincaré group. In Sec. IV, we
shall see that D, is actually a constituent of a “generalized
covariant derivative.”

The transformation law of D, under the action of H is
easily found. It is

8D, = (G, D,y + ¢,¢,,°G, ¥). (2.22)
The rule for constructing the generalized derivative D; X of a
field variable is to subtract from 3, X the expression obtained
by replacing € by — I';® in the infinitesimal change 6X
brought about by the action of H. Applying this rule, we find
that

[D..D)14= — F;°G.¢, (2.23)
where
Fy*=9T;"—9TI,— Fibrjccbca
+ (el_YI"_b — eiyrjb)cyba' (2.24)

This important quantity will be called H-curvature. Equally
important is the H-torsion defined by

D,e,* — Dje,* =F;”. (2.25)
That is,
Fy® =d,e;* — dje,” + (¢/'T," — ¢'T;")c,,"  (2.26)

Comparison of (2.10) with (2.24) and (2.26) shows that
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the H-curvature and H-torsion are related to the field
strengths for G through the relations

G, =F;* —efe%cp " (2.27)

In particular, if the 7, generate an Abelian subgroup of G
(as is the case, for example, for the Poincaré group and con-
formal group), then G;* = F;“.

lll. SPACE-TIME DIFFEOMORPHISMS

The Yang-Mills potentials I'; transform as a covariant
vector under general coordinate transformations or space-
time diffeomorphisms. That is, under an infinitesimal space-
time diffeomorphism x'—x’ — &, combined with an infinite-
simal action of the group G,

ST A=£'9T A+ T35/ + Vet (3.1)
[where & denotes the substantial  variation,
86X = X'(x) — X(x)1. In terms of the new parameters

At=e'+£T4, (3.2)
this is just

ST A=¢£7G4+ VA4 (3.3)

We now link the action of the infinitesimal generators r,,
to the space-time diffeomorphisms by making the identifica-
tion

Ae=¢£° 34)

This step is of central importance in our approach. The
gauge group G now has an action on the space-time points as
well as on field components. Equation (3.3) now becomes

ST A =APFy* + DA% + A%, (3.5)
or, more explicitly,
8e,* =APFp®+3,A%+ (A%, — AT ")y, % (3.6)
OT.*=APFp" + 3,A% + AT %c,.*
+ (A %" — AT ®)cy,°. (3.7)

This change is exactly the change brought about by a space-
time diffeomorphism combined with an action of H [as is
obvious from the fact that (3.4) is €* = 0]. It can therefore
be associated with the change

SYy=E'9¢+€Gy (3.8)

in a field ¢ belonging to a linear representation of H, scalar
under the diffeomorphisms. In terms of the new parameters
(3.2), this is

Sy =A°D, Y+ A°G, . (3.9)
In this form, we see that the action of the generators 7, is
associated with parallel transport of ¥.

The transformation laws (3.5) and (3.9) are the funda-
mental eqiiations in our gauge theory of the group G.

IV. THE MODIFIED LIE ALGEBRA

From (2.20) and (2.22) we can deduce the transforma-
tion law, under H, of the anholonomic generalized derivative
D,y =e,'D;y; we find

8D, ¥ = €"(G,D, ¥ + ¢, "D, ¥ + ¢,,°G.¥). (4.1)
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Observe also that, under H,
8G, ¥ =G, 0y =G, G, = €(G,G, +¢,,°G.)¢. (4.2)

These two transformation laws can be combined in the single
expression

5QA¢=5b(6bQA¢+CAbCQc'/’): (4.3)
where the generators Q, are defined by
Qa’/’: _Du¢! Qa¢= —aa¢' (4'4)

Thus, the components of Q¥ transform according to the
representation 7® R of H.

Now, the Q, are the operators that generate the changes
(3.9) in ¢,

SYy= —A1Q,¢. (4.5)
We shall now look for the commutation relations satisfied by
these operators.

The transformation law of Q, ¥ under H is

ébeQA¢= —-8Q,¢= _eb(abQA'p'*'cAchcI/’)'

Hence,
Qan'/’ = ((—;baa + cabc-G—c )¢ = -Ga_G_b¢'
Therefore,

[Qb’Qa ] ¢ = [6‘1 ’ab ] ¢ = cabc60¢ = cbach'p’
establishing that

[Qa’Qb ] = Cachc' (46)
Also, from (4.3), we have
Qan¢=GbDa¢_cabCQC¢‘ » (47)

Since the G, are constant matrices, their generalized deriva-
tive vanishes

[D,G, =4,G, ~T,°(G,G, —G,G, —c,,G,) =0].

Therefore

QaQb¢=Da_éb¢=-G-bDa¢' (4-8)
Subtracting (5.8) from (5.7), we find that
[Qa 9Qb] = CabYQy + cachc' (49)

The relations (4.6) and (4.9) for the @, are just like the
commutation relations (2.1) with which we set out. How-
ever, the first commutator (2.1) is modified in a manner
already familiar from Poincaré gauge theory.* We have

[D.»Ds 1¢ = e,'D; (65'D;¥) — (aB)
= (D, e’ — Dge,))D;yp + e,'ef'[ D,,D; |9
= (D,es’ — Dpe,’) D — F5G. 9.
But
F,g =eje,'es*(De,” — Dye,”)

= eYj(eBkDaekY - eai‘Dﬁeiy) = Dﬁeaj - D"‘eﬁj’

Therefore,
[D..Dg] = —F"D, — F 4G, (4.10)
which establishes that '
[Qe:Qs] = Fup"Qy + Fop Qe (4.11)
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The H-curvature and H-torsion have taken the place of
structure constants, in a modification of the Lie algebra of G.

We shall now write the commutation relations for the
Q.. , that we have just found, in the more concise form

[QA’QB] =FABCQC1 (4.12)

where the F,;€ are the H-curvature and H-torsion and the
remaining components of F,,€ are the original structure
constants of G. Observe that, if the curvature G; vanishes,
the commutation relations (4.12) reduce to those of the Lie
algebra of G [see (2.27)].

The fact that the appropriate derivative operator D, for
the gauge theory of G is not in general a covariant derivative
operator is at first sight disturbing. However, recall that the
covariant derivative operator associated with a gauge group
H is by definition an operator that acts on a field ¢, belonging
to a linear homogeneous representation R of H, to produce a
derivative of H that transforms linearly and homogeneously.
In the present context, such a covariant derivative operator
does in fact exist, namely the operator

(=)
-0, = ’G‘a ’

which produces a derivative transforming according to the
linear homogeneous representation 7 ® R. Thus, we have an
interesting extension of the usual notion of covariant differ-
entiation.

Now let ¢, and ¢* be quantities belonging to the repre-
sentations T'and 7 of H. We define a new derivative operator
for such quantities, suggested by the relations (4.12) and the
usual structure of *“‘covariant derivatives of the adjoint and
coadjoint representations of a Lie group™:

(4.13)

gi¢A = ai¢A - FiBFABC¢C’
D ¢* = 3,6 + ¢°TBF 5", (4.14)

Unlike the quantities D;¢, and D, ¢, we find that these de-
rivatives are true covariant derivatives in that they trans-
form like ¢, (resp. #*) under the action of H. The geometri-
cal significance of the operator &, is at present obscure.
However, as we shall see, it leads to striking formal simplifi-
cations of some of the fundamental relationships of our the-

ory.

V. THE SOURCE IDENTITIES

Any gauge theory has two distinct aspects: the purely
geometrical aspect and the physical aspect. The physics is
introduced by means of Lagrangians, and, in the case of
gauge theories of space-time groups, by means of hypotheses
concerning the relationship between the potentials and the
metric and affine properties of space-time. In the preceding
sections, we have set up the formalism for the geometrical
aspect of a gauge theory of the group G. We now relate this to
physics by postulating the existence of Lagrangian theories
invariant under the action of the gauge transformations.

Suppose there exists a Lagrangian density .2 (¢,
d,4,T";*) whose field equations are form-invariant under
the action of the transformations (3.5) and (3.9). The inter-
esting question of what are the possible forms of Lagrangian
densities (if any) for a given group G will not be dealt with
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here; we simply assume the existence of .%° and examine the
consequences of that assumption.
The covariance requirement is

i a7 X4 9.7
8, L)Y=86 = & %) —— 8T A
l(é— ) a¢’ ¢+ 35,¢ 1¢+ HI‘,."
5.1
Define the sources of the Yang—Mills potentials
9.L
2= I (5.2)
and employ the field equations
8L 9.7 07
0=— = — —gII', I'= —. 5.3)
VA VA I
We find that
9,(£'.% — I'sy) =3 ,'6T A (5.4)
Now,
£ —Msy=4116,°, (5.5)
where
0, = %Le,'—1I'D, 9y, (5.6)
0, = —II'G, 9. (5.7)

These quantities are recognizable as a canonical energy-mo-
mentum density and a set of (intrinsic) currents associated
with the subgroup H. We find that 8, belongs to the repre-
sentation T of H,

60‘4i=ibc‘bc0ci (5-8)

(and is a vector density under space-time diffeomorphisms).
We now have

d:(4 ABA = D;(4 AeA D)
=3, (AF, "+ DA%+ %%, "). (59

Equating coefficients of D;A* identifies the sources of the
Yang-Mills potentials as the canonical currents,

2,/=8,. (5.10)
Equating coeflicients of A% and A* gives the source identities

Dieai=0AiFaiA’ (5-11)

D6, =8,'c, (5.12)

The first of these is recognizable as a generalized energy-

momentum conservation law, the right-hand side being a set.

of “Lorentz forces” constructed from the currents and field
strengths.
The relations (5.10) are explicitly

9L _ 4, i_ 3L

' — ——D, 5.
de” aay 4 (5.13)
and
% .Y =
= - ———@G,¢. 5.14
ar;e aa.y 4 ( )

They imply that the Lagrangian density has the form
& =eL(¥,D, ), (5.15)

e= e’
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VI. THE FIELD EQUATIONS

Let us now suppose the existence of a Lagrangian den-
sity 77(T';4,,I';*) for the Yang-Mills potentials, and add it
to .#. Covariance requirements impose the restriction

57 =8,&'7) =L T4+ ,%9T7 (6.1)
where
. ey
7,0 = : 6.2
= (62)

(The possibility of constructing such Lagrangians will be
considered in Sec. VIL.)

The field equations obtained from variation of I';4 in
& + ¥ are

::A - % —8H = —6," (6.3)
Hence

3 (E1Y — H T A) = — 6,'6T A, (6.4)
ie.,
DA%,/ — DA

= — 0,/ (APFg* + D,A* + A%, ), (6.5)
where

&= Ve, — H,AF 4, (6.6)

)= —, P (6.7)
Equating coefficients of 9, 3,4 “ gives

Hi= - (6.8)

(which shows that derivatives of the I';4 have to be con-
tained in 7 in the combination G,J.‘ ), and equating coeffi-
cients of D;A* gives the field equations for the Yang~Mills
potentials in the Maxwellian form

D¥#,=0,'+¢," (6.9)
Observe that the & , ‘ are the energy-momentum density and
H-currents for the Yang-Mills potentials. Equation (5.4)
can be regarded as a definition of the energy-momentum and
the H-currents. Applying this to the Yang-Mills Lagran-
gian, we find

gy O

asr-

J

8= A4% /4 terms in D,A 4.

(6.10)

The peculiar derivative operator &, introduced in Sec.
IV can be used to cast some of our equations into a particu-
larly elegant form. For example, the transformation law
(3.5) for the Yang-Mills potentials is just

SrA=9,14, (6.11)
the source identities (5.11) and (5.12) are

2,0,/=0 (6.12)
and the field equations (6.9) are

DHNI=0,+e,T (6.13)

(where e’ is defined to be zero). Note that the expressions
on the right and left in (6.12) and (6.13) transform linearly
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and homogeneously under the action of H (they belong to the
representation 7°), but this was not the case for the source
identities and field equations as originally given, unless
¢.,°=0. Note finally that the definitions (5.6), (5.7),
(6.6), and (6.7) of energy-momentum densities and H-cur-
rents can be written in the “manifestly covariant” forms

8, = Le, +1I'Q, 4, (6.14)

E .= Ve, — HPF, 0 (6.15)

VIl. STRUCTURE OF LAGRANGIANS

So far, we have not proposed any particular form for the
Lagrange density 7”. We have found that it has to be a func-
tion of I';# and G;*. An obvious choice is the Maxwell-type
Lagrange density quadratic in curvature,

7 = (1/k)8"%8'8"G , *G,, v 4, (7.1)

where « is a constant, the matrix (g;) is constructed from
the tetrad according to

8 =6 aejﬂﬂaps (7.2)

where (7,5 ) is some nonsingular symmetric matrix, g")is
the inverse of (g;), and g is its determinant. The matrix
(¥.4p) is the Cartan form for G,

Yap = — CEAFCFBE' (7.3)

Clearly, g; transforms as a tensor under coordinate
transformations or diffeomorphisms of space-time (and can
be interpreted as the space-time metric). The function (7.1)
is a scalar density under coordinate transformations or
space-time diffeomorphisms. It will be invariant under the
action of H provided

Cab Mve t+ Ca5 My = $1apCys”- (7.4)
This can be regarded as a restriction on the choice of the
group G when 7 is given. In terms of the four-dimensional
representation S of H, it can be written more succinctly as

SpST=|S|V*n. (7.5)

In the following section we shall show that the gauge
theory of the group G that we have set up can be obtained by
gauging a global group of space-time diffeomorphisms. This
will of course only lead to plausible physics if the global
group of diffeomorphisms is related to the geometrical prop-
erties of the space-time on which it acts (e.g., Poincaré or
conformal transformations on Minkowski space, de Sitter
transformations on de Sitter space). The Poincaré gauge the-
ory, de Sitter gauge theory, and conformal gauge theory all
have groups G that satisfy a condition of the form (7.5). The
affine group does not, but in the affine gauge theory® an
independent dynamical metric field g;, unrelated to the tet-
rad, is introduced into the structure of Lagrangians. Of
course, in some cases (7.1) will not be the uniquely possible
choice for 7". For example, as is well known, in Poincaré
gauge theory a curvature scalar is a possible choice,® and so
are terms quadratic in torsion.*

The possible forms for the matter Lagrangian present a
more complicated problem, which will not be dealt with
here, except to mention that matter Lagrangians with the
required transformation laws can be constructed for the
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gauge theories of the Poincaré, de Sitter, and conformal
groups.

The gauge theories :of the de Sitter and conformal
groups that arise as particular cases of our formalism will be
presented in a sequel to the present work.

VIil. REALIZATION OF G AS A GLOBAL GROUP OF
DIFFEOMORPHISMS

We consider now what happens when the curvature G
vanishes. We have noted already that the operators Q, then
satisfy the commutation relations of the Lie algebra of G. Let

I, =T 4G, (8.1)

be a connection, with vanishing curvature, whose coeffi-
cients are given functions of space-time (note that &,* is
required to be a nonsingular matrix, so I, =0isnotan ap-
propriate choice). The transformations (3.5) that preserve
the given form of the I, are

VA41=0=38,A44 A Pecp. (8.2)

We have a set of N + 4 linear differential equations to be
solved for the N + 4 parameters A* . The integrability condi-
tions are G;* = 0, which are satisfied. The general solution
can be written in terms of an element o of the group G, satis-
fying

a,~0+af‘,- =0, (8.3)
The integrability conditions for these equations are G; = 0.
Now denote the matrix that represents o in the adjoint repre-
sentation by E,“. Then

3,Eg* + E; T Pecp? =0. (8.4)

Since the matrix Ep* is nonsingular, its columns provide
N + 4 linearly independent solutions of (8.2). The general
solution is therefore

A 4 = GBE BA,
where the a” are constants.

The transition law of ¢, under these specialized trans-
formations, is

5y = a®Mj, (8.6)
My =Eg°D, + E;°G,. (8.7)

In order to establish that (8.6) corresponds to a representa-
tion of G, with a® as parameters, we have to show that

(M My] =ciyM. (8.8)

LetA“ = aPE,* and u* = b °E5* be two arbitrary solutions
of (8.2). Then, since a® and b? are constants, we have

a*h®[M,.M;)
= [A°D, +A°G,, u’Ds + p*G,
=(A°D, pf — (A>p)Dy + A °pP [ D,,Dy
+(A°D, b — (Aom))G, +A°4°(G,,G, .
Now, (8.2) can be written

(8.5)

D A%= —A%c,,% (8.9)
and we have an identical equation in u*. Therefore
a‘b® M, My] =A*uP(c,s"D, + c15°G.)
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(in arriving at this, we make use of ¢,, 7 = 0). Therefore
(M Mp] =E,"Es"(cge’D, + cgr‘G.).

Since E , ® belongs to the adjoint representation of G, it satis-
fies the identity

E, EEyfcps = c,sPEp©. (8.10)
The result (8.8) then follows immediately.

An alternative form for the M, is

My =B, +Bsaaa’ (8.11)
where the coefficients are defined by

Eg* =B, E,°=B,"+B,T (8.12)

The commutation relations (8.8) imply the following identi-
ties:

B, 3By — By'9,B,’ = c,s°BJ,

B, 3,By® —By'3,B," =c,5°Bc" — B,°By'c,/°.

(8.14)
The first of these relations shows that the group G is now
realized as a global group of diffeomorphisms x' —x’ — £,
with

E'=daPB,". (8.15)
The relations (8.14) were given by Harnad and Pettitt’ as
the necessary conditions for the transformation law (8.6)
[with M given by (8.11)] to represent a global group of
diffeomorphisms of the form (8.15).

The procedure adopted in this section is the inverse of
the usual one—we started with a gauge theory and ‘“‘un-
gauged it,” ending up with a global group of transforma-
tions. The Lagrangian density (5.15), if it exists, gives rise to
a Lagrangian density

(8.13)

L W3 px') =eL($,D,¥), (8.16)
where
D,y =28,'0:¢—T,"G, ), (8.17)

for a theory that is covariant under a global group of diffeo-
morphisms (the I';# are invariant specified functions of the
coordinates, not fields). The Noether currents for this the-
ory are defined by

£ — sy = a®Jp". (8.18)
They are

Jg' = B0/ + By16,, (8.19)
where

6/= 28 —1Va,y, (8.20)

6,/ = —11'G,y. (8.21)
They satisfy

8,75’ =0. (8.22)

Alternatively, the Noether currents can be written in the
form

Ji' =Eg16/, (8.23)
where
6, =78,/ — Hjba . (8.24)

The conservation laws (8.22) then take the form
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3,0, = I,%c,5°0., (8.25)
which are of course the limiting cases of the source identities
(5.11). The quantities 8,/ are “intrinsic” currents for the
group G and theJ,/ are the “total” (intrinsic + orbital) cur-
rents.

The covariance of (8.16) is of course lost when the pa-
rameters@* are made space-time dependent [ which is tanta-
mount to making the A* independent space-time-dependent
functions by abandoning the constraint (8.2)]. The change
in the Lagrangian is now

8L =3,(£'.F) — (3,aP)J5". (8.26)

Obviously, the covariance can be maintained by introducing
auxiliary fields I',# so as to revert to the original theory of
Secs. V and VL.

Important particular cases of the foregoing theory arise
when the 7, commute (c,;“=0). The Poincaré group
gauge theories and conformal gauge theory belong to this
class. An appropriate choice for the f“,-‘ in these cases is

&°=687 I=0. (8.27)
The distinction between Latin and Greek indices, and the
distinction between the generalized derivative and the ordi-

nary partial derivative, now disappear. The constraint (8.2)
on the transformation parameters is now

3,A%+ A%y, =0. (8.28)
The matrix o that solves (7.3) is

og=e TN, T X=mx" (8.29)
so that 4

Ept= (e %)t c-x=c,x% (8.30)

where the four matrices ¢, are the adjoint representatives of
the 7,

(ca)p” = g™ (8.31)
On account of ¢, ® = 0, we have

E?=6,? E,"=0, (8.32)
and consequently

£*=a"+ad"E,“ (8.33)
and

8¢ =a*3,9 + a®(E,*d, + E,°G,)¢. (8.34)
The Noether currents in these cases are

Ji/ =64, J/=E,6,’+E, 6, (8.35)

The two pieces of the right-hand side of the final expression
correspond to the “intrinsic” and “orbital” parts of the cur-
rent.
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