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Gauging the conformal group
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Abstract. It is demonstrated that Kibble's method of gauging the Poincaré group can be
applied to the gauging of the conformal group. The action of the gauge transformations is the
action of general spacetime diffeomorphisms (or coordinate transformations) combined with a
local action of an 11-parameter subgroup of SO (4,2). Because the translational subgroup is not
an invariant subgroup of the conformal group the appropriate generalisation of the derivative
of a physical field is not a covariant derivative in the usual sense, but this does not lead to any
inconsistencies.
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1. Introduction

The concept of a gauge group has becomea well-established feature of physical theories,
of central importance. The standard method of gauging a non-abelian internal
symmetry group G is due to Yang and Mills (1954). The group parameters arc made
spacetime-dependent and the covariance of the field equations is maintained by the
introduction of auxiliary fieids, the Yang—Mills potentials or gauge potentials (they are
the components of a connestion ona principal fiber bundle with spacetime as base space
and G as fiber). The gauging of the Poincaré group by Kibble (1961) revealed that the
gauging of groups that act on the points of spacetime as well as on the components of
physical fields is a meaningful concept. The auxiliary fields in the case of the Poincaré
group are essentially a tetrad and a metric-compatible but asymmetric linear connection
on the spacetime. Taking the Lagrangian for the auxiliary fields to be the scalar
curvature constructed from the tetrad and connection leads to a viable extension of
Einstein’s gravitational theory, now known as the ECKS (Einstein-Cartan-Kibble-
Sciama) theory. An alternative Lagrangian, quadratic in curvature and torsion, also
leads to a viable gravitational theory (von der Heyde 1976; Hehl 1980; Hehl et al 1980).

The Poincaré group is the group of isometries of Minkowski space. The two
important candidates for extending the group are the affine group and the conformal
group. Neither of these can bean exact symmetry of a realistic physical theory; they are
to be considered as spontaneously broken symmetries. The gauging of the affine group
has been carried out by Lord (1978); there are interesting indications that the affine
gauge theory may be the correct extension of Poincaré gauge theory and could lead to
an understanding of the relationship between the gravitational and the strong
interactions (Hehl et al 1977, 1978). The conformal group is the fifteen-parameter group
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of diffeomorphisms on Minkowski space that preserves the light-cone structure, The

action of this group on ordinary physical fields (representations of the Poincaré group)
can be defined, and Lagrangian theories that are invariant under conformal transform-
ations can be constructed (see for example Mack and Salam 1969). The breaking of the
conformal symmetry is associated with particle masses and coupling constants that are
not dimensionless. ' ‘

Some general principles underlying the gauging of groups of spacetime diffeomorph-
isms have been worked out by Harnad and Pettitt (1976). The particular case of the
conformal group was discussed by the same authors, in the language of fiber bundles
and employing the concept of second order frames (Harnad and Pettitt 1977). The
present work will demonstrate that the concept of second order frames is not necessary
for the construction of gauge theories of the conformal group.

The approach to the gauging of the conformal group to be presented here is based on
a straightforward generalisation of the method applied by Kibble to the Poincaré
group.

2. The auxiliary fields

The conformal group contains an 11-parameter subgroup H, that leaves the origin
(x* = 0) fixed. It is generated by S, (Lorentz rotations), A (dilatations) and x, (special
conformal transformations) satisfying the commutation relations
[Saﬁ, Sya] = ﬂpySab - naySBJ + naésﬂy - nﬂdsay’
[Sups A1 =0, [Sap k3] = Kallgy — KMy, | (1)
[Aa Ka] = Ke
Let ¥ be a set of field components belonging to a finite-dimensional linear representa-

tion of H. The infinitesimal action x* — x* — £* of the conformal group on the points of
Minkowski space is given by

B = g%+ X0 + px*+ 2x%¢ x — X%, 2)

where a%, w®, p and ¢* are constant parameters associated respectively with translation,

Lorentz rotation, dilatation and special conformal transformation; the corresponding
action on the field is

oY = Eoy+8Y,

£ =

e4Sp+ (A + %K, (3)

=

where 6y is the substantial variation (8y = /' (x)— ¥ (x)) and
F=c
{=p+2-x, 4)
& = 0% +2(xPe* — x*cf)

(see, for example, Mack and Salam 1969).
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* The transformation law for the derivative of y is
S0 = E0 0N+ 0,8 0 +ED W+ 0;E Y ()

(so long as we are discussing the global action of the conformal group in Minkowski
space, we make no distinction between Greek and Latin indices). Now,

0,8% = w}+ pdy+2(c xd3—c®x, —c,x*) = &5+ {5 (6)
and

0,8 = 2({*Sy, + (,A). : @)
so the transformation law for the derivative can be written in the form

80 = 0,00 + (&5 + [03) O + EOW +2(0"Soy + [,A) Y. t)

We now gauge the group by allowing the parameters a* w*, p and c* to be spacetime-
dependent. This is equivalent to allowing £* &, { and {* to become independent of each
other. The relations (6) and (7) no longer hold, so that the transformation law (5) of the
derivative does not have the form (8). We now apply the usual Yang-Mills prescription:
with the aid of auxiliary fields, we can construct a generalised derivative , which
transforms with a transformation law like (8) even though the parameters are spacetime-
dependent,

oWy = E0l, + (&5 + L) Wat 8y + 208y + L A) . ©)

The generalised derivative is constructed from y, 8 and auxiliary fields e} and T';
according to

Y, = 6’4. v, ¥;= oy — fj'l’ , (10)

(the T'; are linear combinations of the generators of H). The necessary transformation
laws of e} and T}, in order for (3) and (5) to lead to-the transformation law (9) for ,, are
uniquely determined. We have

ity = Sel;— e} ST+ el 60y — el T30
which leads to
dely;—el oL, = [E'0ie) — €, 0,87 + (65 + CHALZ
—e[80, T+ 10,8 + 0,6+ [6T,11¥
+2((*Say+ AW

The required expressions for de) and e} 5 I';are given by picking out the coefficients of y;
and . It is natural to regard the fields e} as the components of a tetrad. Assuming the
matrix (eJ) to be nonsingular, with inverse (e}), we have

el = £ 0] + e 0,8 — € (e} + {0, (11)
OT; = &0, T+ 0,8 + 0t + [5T;] — 26} ((* Sy + {,A). (12)

Observe that the action (3) of the gauged conformal group can be interpreted as the
combined action of a general coordinate transformation (Gc1) and an ‘internal’ gauge
group H. The auxiliary fields e} and T'; transform like covariant vectors under the GCT.

‘Under the gauge group H, the tetrad is rotated and dilated. The final term in (12) shows

that I';is not the connection for the gauge group H. Indeed, it was already apparent from
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the presence of the final term in (9) that ¥, is not a covariant derivative associated with
the group H, in the usual sense—its transformation law is linear but inhomogeneous.
This is a special peculiarity of the conformal gauge theory that is not shared by the
Poincaré gauge theory. It can be traced to the fact that the translations do not form an
invariant subgroup of the conformal group. In the following section we shall see how
fully covariant Lagrangian theories can be constructed with the aid of the new derivative
¥,, in spite of the fact that this derivative does not have a homogeneous transformation
law.

The transformation laws (11) and (12) can be better understood as follows. Consider a
purely internal SO (4,2) symmetry generated by 7,, S5, A and k, satisfying (1) together
with

[ ] = 0, [, S, = apm, nwn,,,} 13
1 [ Al =7 [Ma k] = 2(MapD + Spa).
and consider the transformation law of the connection
Ij=é&n,+T; (14)
under the simultaneous action of a Gcr and H: ,
oT;= &0, T+ Ti0;¢' + 98+ [ET)]. (15)

We find precisely the transformation laws (11) and (12) for the two parts of I';. Thus the
tetrad and the ‘pseudo-connection’ I'; together constitute a connection for the group
SO 4, 2).

3. Lagrangian theories

Let L(y, 0,y) be a Lagrangian for a theory that is invariant under the global conformal
group. That is,

L : : - '

L=3r00+Tl000 =8¢0, - (16)
where

IT' = 0L/00y. | (17)
Employing the field equations

oL 0L .
we get the Noether identities in the form

0 (EL-TI'8y) = 0. ' (19)

The Noether currents are energy-momentum, angular momentum, the dilatation
current and the special conformal current, defined as the ceofficients of the parameters
in the expression

CL-TI'0Yy = a°‘9;+§w“ﬂ¢({;p +pD + N, (20)
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They are, explicitly,
0L = Lo~ T8,
Mg = x, 05 — x5 0L+ Th,
D = x°0i + AL |
AL = (2xPx, — x25,B) 05 +2(xP iy + x,A) + K, (21)
(c.f. Mack and Salam 1969), where the intrinsic currents are |
szﬁ = - HiSaﬂ‘/” ;
At = —IT'AY, , A (22)
K= —IT K.
Alternatively, observe that (16) is
oL . . ‘
W oY +I1'60y = C'O, L+4L L. (23)
Substituting (3) and (8) into this expression gives
O B0 T 30,0+ 65+ )0+ 2CA+ TS )Y] = 4L L @49

Equating coefficients of w™, p and c¢* gives the following conditions for the field
equations to be conformally invariant:

oL 3

w Saﬁ‘// + I (Saﬁa'y'// + nay ap'/’ - ﬂaﬁ ay'//) = 0;

oL

35 AV +IT L+ 8)3% = 4L, { (25)
oL

“5’(17 Ka'l/ + I‘Iy [’Caayl/’ + z(ﬂayA + Say) ‘/’] = 0 /

When the parameters of the conformal group are made spacetime-dependent, the
covariance of the theory is lost. In fact, the change in the Lagrangian L, under the action
of the group with spacetime-dependent parameters, is given by

aL i — i
oL -——W&I/+H56il// = 0; (IT'6y)
= 0; (6'L)—0; (§'L —TT'Y).
That is,
0L = 8;(£'L)— (0:a%) 6L, H% (0:0*f) Mg — (0ip) D'~ (0ic™) X . (26)

This expression is analogous to the expression given by Mukunda (1982) for the
Poincaré group. We can attempt to restore the covariance of the theory by replacing the
derivative of by the generalised derivative y,. Since i, was contrived to have the same
transformation law under the local action that d,§ had under the global action, it
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follows that (24) and (25) will hold for the modified Lagrangian L (i, y,), if 04 is
replaced throughout by ¥,. Hence, for the new Lagrangian, :
oL oL .
0L =— Y+ — =9,
N ll/-f-awy oY, =EaL+4(L 27
(c.f. (23)). The right side is now no longer equal to 8; (¢'L). A further modification of the
Lagrangian is required. We introduce an auxiliary field e and define % = eL so that

8% =8, (E%). | - (28
The required transformation law for e is
e = ;(E'e) — 4Le. (29)

That s, eis a scalar density under a gcrand undergoes dilation under the local action H.
An obvious prescription for e is the determinant of the tetrad,

e = |ef]. (30)

Thus, as for the Poincaré group (and for internal symmetry groups), there is a simple
prescription for converting a Lagrangian theory, invariant under the global conformal
group, to a theory invariant under the conformal gauge group (i.e. under Gcrand the
local action of H): replace derivatives by the generalised derivatives (10) and multiply by

the tetrad determinant (30). Then add on a Lagrangian for the auxiliary fields—the
obvious choice is

vV T ) gij gkl trace Fik Fﬂ, (31)
where

gij = &l e fep, . 32)
and

Fy=0T;—0Ti— [T, Tl, (33)

constructed from (14) with n,, S,4, etc. belonging to the adjoint representation of
SO (4,2).
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