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Abstract 

We continue our investigation of a variational principle for general relativity in which the 
metric tensor and the (asymmetric) linear connection are varied independently. As in Part I, 
the matter Lagrangian is minimally coupled to the connection and the gravitational La- 
grangian is taken to be the curvature scalar, but we now relax the Riemannian constraint as 
far as possible-that is, as far as the projective invariance of the assumed gravitational 
Lagrangian will allow. The outcome of this procedure is a gravitational theory formulated in 
a volume-preserving space-time (i.e., with torsion and tracefree nonmetricity). The vanishing 
of the trace of the nonmetricity is due to the remaining vector constraint. We also discuss 
the physical significance of the relaxation of the Riemannian constraint, the possible relaxa- 
tion of the vector constraint, the notion of the hypermomentum current, and its possible 
relation to elementary particle physics. 

w Introduction 

In  Part  I: Riemannian  Spacet ime [1 ] ,3 we analyzed the variat ional  principle 

for general relat ivi ty (GR),  in which  the componen t s  to  be varied were those o f  

the met r ic  and an asymmetr ic  linear connect ion .  The Riemannian  s tructure of  

the space-time was imposed  by the in t roduc t ion  o f  Lagrange multipliers.  These 

1 Present address: Department of Architecture, University of Edinburgh, Edinburgh 1, UK. 
2present address: Department of Physics, University of Alabama in Huntsville, Huntsville, 

Alabama 35899, USA. 
3We shall refer to this paper hereafter simply as I; our standard notation is that of Schouten 

[2] and is summarized in I. 
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multipliers turned out to be the components of the hypermomentum current, 
which is thus related to the "constraint force" that imposes the Riemannian 
structure. In Part II, we now adopt the approach of Hamel [3] : If a constraint 
is removed, the corresponding constraint force becomes an intrinsic force de- 
pending primarily on the deformations that were previously forbidden by the 
constraint. A constraint in physics is usually not completely rigid; the notion of 
rigidity appears only within the domain of some approximation. Indeed, rigid 
space-time structures are, as argued by Einstein ([4],  p. 36), contrary to the 
spirit of GR. 

However, if the gravitational Lagrangian contains hidden invariances, the 
complete relaxation of all constraints cannot be carried out; one encounters 
residual constraints associated with the hidden invariance. This is the case with 
the curvature scalar density ~ adopted as the gravitational Lagrangian in Part I. 
The projective invariance of ~ implies that it can respond only to 60 of the 64 
degrees of freedom associated with the linear connection. A matter Lagrangian 
obtained by minimally coupling the matter to the connection will not in general 
be projectively invariant. Thus, in general, the whole of the Riemannian con- 
straint cannot be relaxed as long as ~ is taken to be the whole of the gravita- 
tional part of the Lagrangian; a residual vector restraint will have to remain. 
Theories with such a residual restraint will be seen, in Section 8, to be equivalent 
to theories without constraint whose matter Lagrangians are contrived, by 
violation of minimal coupling, to be projectively invariant. In order to be able to 
fully relax the Riemannian constraint, without violating minimal coupling, and 
thus to arrive at the full metric-aft`me (L4, g) theory [5], it is therefore neces- 
sary to generalize the gravitational part of the Lagrangian, so as to break its 
projective invadance. This problem will be discussed in the conclusion to this 
paper. 

From the point of view of differential geometry, the metric properties of a 
space, and its affine properties, i.e., those related to parallel transport, are con- 
ceptually distinct. Yet, in GR, the metric properties of space-time are regarded 
as fundamental, whereas the aft'me properties are defined in terms of them and 
have only a subsidiary role; the space-time of physics is assumed a priori to be 
Riemannian. Now, in I, it was established that the Riemannian structure of 
space-time in GR can consistently be regarded as due to the action of a con- 
straint force. From this viewpoint, the Riemannian assumption appears fairly 
artificial. In this paper, the arbitrary imposition of Riemannian structure is 
replaced by a situation in which any lack of independence between metric and 
connection would arise dynamically as a consequence of the nature of the cou- 
pling between the connection and the matter fields that give rise to the space- 
time geometry. The nature of this coupling is determined by a minimal coupling 
hypothesis (cf. [5, 6]). 

In Section 2, the properties of the curvature scalar density ~ are investigated, 
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with particular emphasis on its projective invariance, and a volume-preserving 
linear connection is def'med. In Section 3, the Bianchi identities for torsion and 
curvature are spelled out. Their contracted versions are brought into a projectively 
invariant form. In Section 4, the matter Lagrangian with minimal coupling to 
the connection is introduced and the important relations between energy- 
momentum and hypermomentum are derived. Section 5 introduces the part of 
the Lagrangian associated with the constraints. The Einstein-Cartan-Sciama- 
Kibble theory [7] (EC theory) is shown to arise from a partial relaxation of the 
constraints, in Section 6. In Section 7 we illustrate the way in which inconsis- 
tencies arise when a relaxation is attempted which is forbidden by the projective 
invariance. In Section 8 all the constraints wtfich the projectively invariant ~t will 
allow to be relaxed, are relaxed, and we are left with a single vector constraint. 
The physical implications of the approach are discussed in Section 9. 

The literature on metric-aft'me variational principles we collected already in 
I. We emphasize again the usefulness of the formalism of Kopczyflski [8] and 
of Trautman [9] for our purposes. In the meantime a coherent framework for 
an affine gauge theory has been given by Lord [5], whereas Hennig and Nitsch 
[i0] and Norris, Fulp, and Davis [ 11 ] supplied a corresponding differential geo- 
metrical analysis. Interesting work on metric-affine theory has also been recently 
done by Davis [12, 13], Goenner [14] (who cleared up a misunderstanding of 
Tsamparlis [15], inter alia), by Szczyrba [16, 17], Yasskin [18], and, for a 
complex metric and a complex connection, by Kunstatter [19]. For somewhat 
related work see also Stachel [20]. Further work will be cited at the appropriate 
place in our discussion. 

w The Curvature Scalar Density and the "Dagger Connection" 

The gravitational field is represented by the 10 components of the symmetric 
metric tensor gq and the 64 components of the asymmetric linear connection 
I'll k (or, equivalently, the 24 torsion components Silk := P[ iJ] k plus the 40 non- 

r 
metricity components Qijk = -Vigig). As in I, we take the gravitational La- 
grangian density to be 

1 a(g, 1-') := 1 egiJRq(F ) (1) 
2• 

We propose to study the sequence of theories arising from the Lagrangian density 

1 r 
~(g, r )  + 3:(g, ,I,, Vq') +e (2) 

when the constraints are successively relaxed. s is the matter Lagrangian in 
which the coupling to the connection is specified by a minimal coupling hypo- 
thesis. C is the term which contains the constraint forces (Lagrange multipliers). 
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We wish to emphasize, however, that we are adopting this ansatz mainly 
because of its simplicity. It serves as a means of illustrating the general principles 
involved in the idea of relaxation of constraints. We do not regard it as an ac- 
ceptable candidate for the gravitational part of the Lagrangian of a fully de- 
veloped metric-affine theory (see the discussion in Section 9). In our view, its 
projective invariance is a defect which rules out this possibility. But it is pre- 
cisely this defect which, in the present context, renders it useful as a means 
of investigating the way in which hidden invariances in a Lagrangian hinder the 
process of relaxation of constraints. Moreover, since (1) is the "obvious" metric- 
affine generalization of the gravitational Lagrangian of GR, its investigation gives 
some insight into the deeper structural aspects of that theory.: 

The symmetric part of the generalized Einstein tensor G ~J is the functional 
derivative of ~ with respect to the metric, and the functional derivative of 
with respect to the connection is the Palatini tensorPd]i: 

~ ~ e(-G(iJ)Sgii + 2pi j i~Fij  k) (3) 

Here ~ denotes equality apart from an irrelevant divergence. 
The Lagrangian (1) is pro]ectively invariant: 

k , k + (4a) 

gi] ------> gii (4b) 

That is, it is invariant under certain changes in the connection, whereas the 
metric is kept fixed. 4 Geometrically, the meaning of this transformation is as 
follows: A linear connection specifies a definition of the parallel transport of 
a vector along a curve. Two alternative definitions of  parallel transport differ 
only in the change they produce in the length of the vector, if and only if the 
associated connections are related by a transformation of the form (4) (Schouten 
[2]). In the context of this paper, the important consequence of the projective 
invariance of 6~ is that the Lagrangian (1) is capable of responding to only 60 
of the 64 degrees of freedom associated with the affine connection. 

In order to gain a better understanding of the nature of  projective invariance, 
consider the splitting of the connection into a Riemannian part and a non- 
Riemannian part 

where 

r t i  k -- + wij (5)  

.~k + 1 k k k 
Wij k. = Sij k. - Sj.~ + ~ .ij ~ (Qij. + Qj.i - Q .ij) (6) 

4Other types of "projective" transformations have been introduced which are based on a 
combination of (4a) with certain related transformations of the tetrad (see, for example, 
Davis [13] ) or of the metric (see, for example, Smalley [21] ). Throughout the present 
work, "projective invariance" will mean simply invariance under (4). 
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Correspondingly, a vector or tensor, paraUely transported from x i to x i + dx i, 
will undergo a change of components due to the. purely metric properties of the 
space-time and the choice of the coordinate system (specified by the Riemannian 
definition of parallel transport based on the Christoffel symbols), and in addi- 

W .,k dx  i. The "deforma- tion it will be changed by a linear transformation a] k := zj. 
tion" c~ can be split into a rotation, a shear, and a dilation, corresponding to the 
decomposition of the tensor Wilk.: 

1 l 1 l Wije = + Wiijk ] + (Wi(jk) - -4 g]k Wil. ) + -4 glk WU. (7) 

The contortion Mijk := - Wi[jk ] is, in this context, more fundamental than the 
torsion in that it has a distinct geometrical meaning with regard to the rotational 
part of the deformation produced by parallel transport, whereas the torsion 
Sij k. = W[ ij] .k involves a skew-symmetrization on the "wrong" index pair and 
thus has no such simple geometrical interpretation. The change in the length of a 
vector is produced by the trace of  WiLe: 

Wit!  = 2ai := ~ Oil! (8) 

The vector Qi is the Weft vector. 
The connection can now be decomposed into a part which preserves the 

length of a vector undergoing parallel transport, and a part that changes the 
length: 

Vii k = ~Pii k + �89 Qi6~ (9) 

The "dagger connection" defined by this expression will be called the 
volume-preserving part of the connection F//k, for the following reason: The law 
of parallel transport of the volume measure e := (_g)1/2 is 

6e = Pi le  dx i = e(O i In e + 2Qi ) dx i (10) 

(Schouten [2] ). The first term in the parentheses is a "metrical dilation" pro- 
duced by the Riemannian (Christoffel symbol) part of the connection, because 
e is a density, and the second term is an "affine dilation" produced by the non- 
Riemannian aspects of  the connection. The affine dilation is zero if and only if 
the Weyl vector vanishes 

P 
Vie = -2eQi = 0 (11) 

and a connection with this property is said to be volume preserving s with 
respect to the metric gij. Every connection is related by a projective transforma- 
tion to a volume-preserving connection, and this is uniquely the "dagger con- 
nection" defined by (9). Note that the dagger connection is projectively invari- 

5Schouten's [2] definition of volume preserving (teleparallelism for scalar densities) is 
slightly more general than ours (no affine dilation). 
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ant (i.e., invariant under projective transformations applied to the original 
connection) and has vanishing Weyl vector: 

tVte = -2e tQt = 0 (12) 

The projective transformation law for the Riemann tensor is 

Rtjt` ! ----+ Rtjk! + 2~I/XJl fit (13) 

and hence the Riemann tensor of the volume preserving connection is 

tRijk! -- l =Rtjt`" - ~ltQilS~ (14) 

In a metric-affine space, there are three possible contractions of the curvature 
tensor, namely, 

"l k Rjt` ::R,jt`!, : :g 'Rti , ,  vtj :=Rti,! ( is)  
The trace of the first is R, that of the second -R, and the third being skew- 
symmetric, is traceless. Thus R is unambiguously defined. Its projective invari- 
ance follows immediately from (13), and can be expressed in the form 

R(I ')  - R C F  ) (16) 

Thus, the part of the connection missing from R is identified as the Weyl vector 
Qt. The form of equation (14) leads to the conclusion that(for a Riemann tensor 
to be pr0jectively invariant, it is not necessary for the Weyl vector to vanish; it 
is sufficient if Vii = 40[ iQjl = 0. But in order to have a volume-preserving space- 
time, it is, according to (11), necessary for Qt to vanish. 

From the projective invariance of ~, it follows immediately that the Palatini 
tensor in (3) is projectively invariant, 

p[jt _~ ? pkji (17) 

and that it is traceless: 

Pi tt` = 0 (18) 

Because of (17), the expression for the Palatini tensor in terms of the torsion 
and nonmetricity can be slightly simplified by writing it in terms of the torsion 
and nonmetricity of the volume-preserving connection. We get [cf. I, equations 
(4.20), (4.21)1 

p.?c,j. = ,Tijk. + 8[ ~ ?gill! (19) 
where 

l *r;j. -- *stj * 2 lf *sjj,. 
is the modified torsion tensor of the volume-preserving connection. 

For completeness and ease of reference, the relations between the Palatini 
tensor, and the contortion and nortmetricity, obtained in I, will be restated. 

(20) 
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They are 

_p(ii)k. = .~ (r _ 8(f tQ!i)l ) (21a) 

-Pt  i/] x - M k ~M!]I I . - [ i j l .  - 6 1  (21b) 

where Mij k is the contortion tensor, 

Mijk = -Silk + Sjki - Skij - QIJkli 

=-  ?Silk + ?Sjki-  ?Skij-  ?QIjk]i (22) 

Inverting the equations (21) gives 

1 �9 t _ ( 2 3 )  -M~zij = P[ ij] k + P[jk ] i + P[ ki]j - ~ gkl iPjl t. - ? Wk[ ij] 

12 tQkiJ = P(ij)k - P(jk)i - P(ki)j + 1 gijP(kl)l = ? [4Jk(i]) (24) 

From (21) and (23) we conclude that the contortion vanishes if, and only if, 
P[/Jl k = 0, and the traceless part of the nonmetricity vanishes if, and only if, 
P(ii)k = 0. These equations also allow us, after some algebra, to express the 
Palatini tensor directly in ? W: 

pi /k  = 1 (_ ?w/ ik  + 6~ ?W!i I - ?Wi~ + 6~ ?W!t]) (25) 

One can read off part I, equation (4.24), directly from (25). 
Finally, we give an expression for the decomposition of the Lagrangian 

density ~ into a Riemannian part (the Riemannian curvature scalar density) 
and a non-Riemannian part: 

~ ( r )  "~ ~((}) + e ?pfj i  ?Wijk. (26) 

This result can be established as follows: When the connection in the definition 
of the curvature scalar is expanded according to (5), the resulting expression has 
the overall structure 

a ( r )  = ~({ )) + ai~i(w ) + ~(w) (27) 

where ~i is a vector density, homogenous linear in the components of W, and Y( 
is a scalar density, homogenous quadratic in the components of W. (This result 
is most readily established in a Riemannian coordinate system, so that (~} = 0 
at some point.) Now, the divergence term does not contribute to a functional 
derivative of ~, so that 

eP~ Ii := �89 8 ~/6 Vii k = �89 86~/8 Wij k. = �89 a ~/a Wij k. (2S) 

Therefore 

eWij ~ plffi = 1 wijk 0 ~/0 Wij ~ = ~ (29) 

(the last step follows from Euler's theorem). The result, equation (26), is there- 
fore established, since ? Wi] k is just the traceless part of Wij ft. Incidentally, 
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since ~R(P) = 6~(tP), we could have carried through the proof ab initio in terms 
of~W. 

w The Bianchi Identities for  Torsion and Curvature 

In a metric-affine space-time, the Bianchi identity for the torsion (called 
"second identity for the curvature" in Schouten [2] ) 

R[ i]ff l r = 2V[ iSjk I l _ 4S[ i] msl~]  ml (30) 

and the ("third") identity 
r 

Rli(k]) ~ V [ l Qi] kj + Sli m Qm kj (31) 

lead to an important relation for the divergence of the Palatini tensor. We con- 
tract (30), remember the definition (15), and find 

^ k ^ k Rtiil : - V d " r  - �89 Vi i - -VkT, .  - 0tir/l  k (32) 
^ F 

where Vk := Vg + 2Ski! represents the covariant divergence operator and Tq. g := 
so k. + 25 i fSjl / the modified torsion tensor. Observe that in a volume-preserving 
space-time we simply have R[ ijl = ~gTqk. �9 On rearranging (32), we get 

^ k 
eR[q] = Vk[e(Tii.  - 2~ifQil)] 

= ~k [e(Pq. k + �89 Qij k. - �89 6~QI/)] (33) 

We subtract the contraction of (31) (multiplied by e) from (33) and obtain, 
after some heavy algebra, 

~ k(epi.jk) = egik(R [ kj] _ R ik ( j l ) )  

= egik( ,  R , j k  _ G(jk)) (34) 

The transformation to the second line will be discussed further down. It is not 
difficult to show that both sides of (34) are separately pro]ectively invariant. 

The Bianchi identity for the curvature reads (see [2]) 

F 
2S nR m (35) V l i R j k l l  m =-- Ill. k]nt. 

On twofold contraction, we can derive a divergence relation for an Einstein- 
type tensor. Of course, like the divergence relation (34) for the Palatini tensor, 
we would like to obtain a projectively invariant form of such a relation. We have 
to note, however, that the naive generalization of the Einstein tensor 

Gi I := R i  i - �89 6~R (36) 

is not projectively invariant in a metric-affme space-time, even though its sym- 
metric part G(ij) is, as is readily apparent from (13). Thus let us look for a 
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projectively invariant second-rank tensor which, upon specialization to a U4, 
reduces to the Einstein tensor (36). 

In this context two observations are valuable. The right dual of the curvature 
tensor 

R ,  klab := 1 gkl  [ cal eabca (37) 

where the e symbols obey (cf. [22] ) 

_ ~ i i k t ~i/kt (38) eiJXtea~ca - - 4 .8 [ a 8 b8 c 8 d ] =: -~abca 

is clearly projectively invariant, as a comparison with (13) shows�9 Further- 
more, the contracted double dual of the curvature tensor in GR coincides with 
the Einstein tensor. Thence, we derive the double dual 

,R,i{ab := �88 eiJktRl~i t ca] eabccl (39) 

the contraction of which 

*R*.//:= *R*e.~'/.e = �89 (Rj i -  Rk) .ki- 8}R) (40) 

indeed reduces to the Einstein tensor Gi ] (36) in a U4. 
An explicit form of (39) reads 

*R*!(ab = -Ri~b[i/] * 2R/[a/C[ islb] ] - 2R [ixj][aVb] *R8[ i8]  b] (41) 

Observe that the twice double dual of RE1 ca gives 

,(,R,),i/.a~ = Rii.t abl (42) 

If we apply (40) and (36) to (34), the second line of (34) can be deduced at 
once. 

Let us now turn to the identity (35). We raise the index l and form the 
contracted double dual according to the prescriptions (39) and (40)�9 A straight- 
forward but tedious calculation yields 

~ k ( e ,  R , k  i) =--- e(2*R *!jSli  j. a_ O. kiD�9 �9 �9 . T , j  "'lilt + 1 G(t"k)Qijk ) (43) 

an identity the two sides of which are separately projectively invariant. The 
alternative form of (43), which may look a bit nicer, is 

Vk(*R*k.i)-I lpc!Rii  k j -  (II[ijl k + II[ii/cli] +IIk[j i])Rn4kmJ+Ili jeR kj (44) 

where 

ilijk. := pqk. + 1 P[ til .lSf - ~- P[/J1.1 t 5 ~k" (45) 

is a modification of the Palatini tensor. 
The variation of the gravitational Lagrangian (3) with respect to the connec- 

tion defines the Palatini tensor; variation with respect to the metric gives the 
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symmetric part of the Einstein tensor (36). The importance of (34) for the 
divergence of the Palatini tensor is readily apparent. However, the divergence of 
the contracted double dual (43) of the curvature tensor does not directly relate 
to the divergence of G (ii). The resolution of this problem lies in the inherent 
limitation of the use of holonomic coordinates. The projectively invariant tensor 
*R *ii occurs naturally in the language of the anholomic (tetrad) formulation 
upon variation with respect to the tetrads. 

{}(4): The Matter  Lagrangian 

The symmetric energy-momentum tensor rail  and the hypermomentum 
tensor A~ ]i are defined as variational derivatives of the matter Lagrangian with 
respect to the metric and the connection: 

~s "~ e(�89 8gij rai l  - 6r i j k  AfJ  i) (46) 

[cf. I (3.5) and I (3.6).] If only first-order derivatives of the matter fields 
occur in s the canonical energy-momentum tensor and the symmetric tensor 
r ai/are related by 

s - ~ V i~  = e r oi.i + ~k(eAi jk) (47) 

which is the prototype of the Belinfante-Rosenfeld symmetrization formula 
[231 for the energy-momentum tensor. 

An alternative formulation of (46), fully equivalent to it, is obtained if the 
gravitational field is regarded as being represented by the metric, the torsion, 
and the nonmetricity.  We then have (46) in the form 

5s "~ e(�89 6gijB i] - I 5Q P kii "1" 6Si].kldIj i) (48) -~ 6k 

where 

eB t~ = e r oiJ + Vk(ed 7k) (49) 

vijk = Ai(ik ) + Ai(ki) - Ak(ji / = Vjik (50) 

I.tij k = A[jil k + A[ ik ] j - A I ~jl i = -I~ik] (5 1) 

The tensor B i /which  couples to the metric in this formulation is a generali- 
zation of the Belinfante-Rosenfeld symmetrized energy-momentum tensor [23] 
(which couples to the metric in conventional GR). This is readily apparent when 
we consider that the Riemannian part of the connection (Christoffel symbols) 
is absent from the second and third terms of (48). Equation (49) can be cast in 
a form resembling the relation between the Belinfante tensor and the canonical 
tensor. Substituting the identity 
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z~i/k = ~i/k _ lai/k (52) 

in (49), we obtain by means of  (47), on setting the nonmetricity to zero, the 
0"4 relation 6 

eBi]= (s - ~s r ) ~jt~ Vi + Qk(el2 ilk) (53) 

Other equivalent formulations of  (46) are possible. For example, working 
with metric, nonmetricity, and contortion, we have 

6s "~ e[ �89 6gii(B ij - 2Sxt({/~/)Ik) + 6MkIiA[ ij] k _ �89 6QkjiA(ij)lc] (54) 

Thus the contortion and the nonmetricity couple, respectively, to the spin 
current and the proper hypermomenturn current. 

w The Riemannian Constraint 

The final term in the Lagrangian density (2) is the term containing the Rie- 
mannian constraint, which we can write in three alternative but equivalent ways: 

O . .  

C := eAiJq/eijk. (55) 

" _ ?. 4i,~ k~ (56) C := e( 1 }kl'Qijtc ~lc oi L ) 

e : :  e(-~[iJ]k Mej i + 1 ~ 07)/cakji ) (57) 

The quantities with circle superscripts ~ are Lagrange multipliers. The 
relations between A, ~, and/]  are of  precisely the same form as those between 
the currents A, u, and/1 given in (50) and (51). The theory that has now been 
set up, obtained by independent variation of  metric, connection, and Lagrange 
multipliers, is precisely GR, as was demonstrated in detail in I. 

Because o f  the special role o f  the Weyl vector with regard to the projective 
invariance of  6~ and the influence of  this invariance on the process of relaxation 
o f  constraints, it will be found useful to separate out the Weyl-vector contribu- 
tion in (56), and we then have 

C: = e [1  (~kji_ 1 gkj~ili ) taij/c _ ~lji tSijk " + 1 ~iai ] (58) 
O .  

where A ~ := ~i ti. In this form, the constraint is explicitly divided into a pro- 
jectively invariant part involving ?Qijk and tSije., and a projectively noninvariant 
part associated with the Weyl vector Qi. 

6As we recognize in (53), the classical Belinfante-Rosenfeld symmetrization of the energy- 
momentum tensor can be executed already in a U4; see, however, Kopczyfiski [8] for a 
contrasting point of view. 
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w Nonzero Torsion: Einstein-Cartan-Sciama-Kibble Theory 

We first consider the consequences of relaxing the torsion constraint Siik. = 0 
of GR. Thus we obtain a theory on a U4 space-time, in which the connection is 

F 
asymmetric, but the metric condition Vkgii = 0 holds. This theory is identical 
with the EC theory [7]. The Lagrangian is given by (2), where the constraint 
term is in the form (56) with ~ / i  = 0. Variation of metric, connection, and 
e9 k]i leads to the field equations 

Qiik = 0 (59) 

pijk = K(A/ik _ ~,Tk) (60) 

eG (ij) = K [e P O i/+ ~ k(e~iJk)] (61) 

Because of the symmetry of 8, the second of these equations implies 

pie] k = tcAIij] k (62) 

Thus the spin is dynamically coupled to the geometry�9 The proper hyper- 
momentum &(/j)k is not- i t  provides the constraint force that maintains the 
metric condition�9 Since the nonmetricity vanishes, (19) is just 

�9 t ( 6 3 )  Pi] k. = Ti] k. :=Si]k + 2~[kS]]l. 

Therefore P(i]) k. = 0 and (62) is simply 

Ti/k = t~ AIijl k (64) 

The skew-symmetry of the Palatini tensor in a U4 enables us to identify the 
constraint force in (60) as the proper hypermomentum 

~ipc = A(ii)k (65) 

Substituting this in (61) leads to 

eG (i/) = Ic [e r eiJ + ~ k(eA(iJ)k)] (66) 

Take the divergence of (62) and apply the identity (34) (note that, because the 
nonmetricity vanishes in a U4, the carat derivative commutes with the raising 
and lowering of indices, and also Rij(kt) = 0). We obtain 

eR [i / l= K Vk(eA [ij] k) (67) 

Adding (66) and (67), and recalling the expression (47) for the canonical energy- 
momentum tensor, we have finally 

Gil = e ~ Vi (68) 

Equations (68) and (64) will be recognized as the field equations of the EC 
theory. 
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w Relaxation o f  the Metric Condition 

1049 

In this section, we consider the consequences of relaxing the metric condi- 
tion in Einstein's theory, while preserving the symmetry of the connection. 
That is, we take 9kji = 0 in (56). The theory is clearly equivalent to the one 
obtained by independent variation of metric and connection in the Lagrangian 
density (I/2n) ~ + s where the connection is taken a priori to be symmetric. 
The field equations obtained from the variation of e~, connection, and metric 
are, respectively, 

Sij. k = 0 (69) 

1 p f f i  = A f f i  _ ~l~]i (70) 
K 

G ij = t~ ro i i  (71) 

Because of the skew-symmetry of/~, 

el~(ji) = K AI~ (ji) (72) 

and because of the vanishing torsion, equation (19) gives 

p.k,1. = ~[~ ?atli.t - 6[~Qi] (73) 

Therefore, 
1 l • Qi jk = - Pi (jk) +gJk(k PitI- -~P.(iO) + �89 (6iPi (kO + 6~Pi(Jt)) (74) 

Note that the right-hand side contains only the symmetric part, Pi (/k), of the 
Palatini tensor. Thus we obtain, from (74) and (72), an expression for the non- 
metricity in terms of the part A~ (]i) of the hypermomentum. The rest of the 
hypermomentum would not be dynamically active in producing the geometry. 
From the forms of (50), (51), and (52) we see that we could equally well say 
that, in such a theory, the current 1) ijk is dynamically active and the II ilk is not. 
On the other hand, they both contribute to the constraint force that keeps the 
connection symmetric: 

~ l j i =  A{c[Ji] + 1 (~]kA i (il) _ ~ikAi(JI))  (75) 

Unlike the EC theory, the theory presented here is not expected to have any 
physical significance, basically because the current u, in contrast to the spin 
current, does not seem to play an active role under normal circumstances in the 
low-energy region, see Section 9. It was investigated purely as an illustrative 
example of the procedure of relaxing the constraints. The main point to be made 
is that it is a mathematically consistent theory. The reason for this is that the 
remaining constraint is projectively noninvariant. 

In order to illustrate what happens when the remaining constraints, after 
relaxation, are projectively invariant, we consider an equally artificial theory in 
which we have an independent metric and contortionless connection. The 
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remaining constraint in this case (vanishing contortion) is projectively invariant, 
and the characteristic peculiarity of (1/2K) 6~ as a Lagrangian density makes 
itself felt. The constraint term is now (57) with ~(ij)k = 0, and eA [ ij] k, the 
connection, and the metric are independently varied. We ignore the equation 
that comes from the metric, which is complicated and contributes nothifig to 
the argument. The remaining field equations are 

Mi/k = 0 (76) 

pkji  = K ( A k j i  _ ~[  k j]  i) (77) 

Hence 

p(kj)i = n A(k])i (78) 

The inconsistency is at once apparent. Since the Palatini tensor is traceless in 
its first two indices, such a theory would be possible only for matter with a 
vanishing dilation current A i := A i ti. Because the geometry is projectively 
invariant, it cannot respond to the degrees of freedom of the matter associated 
with projective transformations. 

Since the contortion vanishes, equation (21 b) shows that the Palatini tensor 
is symmetric, and equation (77) identifies the constraint force as the spin, 

~[ kj l i  = A[ gjli  (79) 

and only the proper hypermomentum A (k})i is dynamically active in determin- 
ing the geometry. It gives rise to the Palatini tensor through (78) which deter- 
mines the volume-preserving connection t p through equation (24). The Weyl 
vector remains undetermined-a further consequence of the projective invariance 
of the remaining constraint. This therefore illustrates for the scalar curvature 
Lagrangian the principle: The remaining constraint on the geometry must not 
be projectively invariant. 

w Single Vector Constraint 

The theory based on the Lagrangian density (1/2K) ~ + s without any con- 
straint (fully independent metric and connection) in general does not determine 
the connection uniquely because of the projective invariance of ~;  hence it is 
inconsistent from a physical point of view. 7 At least four degrees of freedom 
must be constrained, and these must not be projectively invariant. 

Sandberg's [24] avoidance of this difficulty was an artificial prescription for 
making the matter Lagrangian projectively invariant. The proposal was to 
replace the covariant derivatives in s by covariant derivatives based on the 
projectively invariant connection 

7The generalized Einstein-Cartan theory of [16] is of this type. 
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= s,g; ( 8 0 )  

Although this prescription leads to a mathematically consistent theory, there is 
no physical justification for the ad hoc hypothesis o f  a projectively invariant 
matter  Lagrangian. In any case, the use of  the connection (80) represents an 
arbitrary violation of the minimal coupling hypothesis without any direct 
geometrical significance. 

Nevertheless, it is interesting to note, by way of an illustrative example, 
how Sandberg's theory fits into the scheme of metric-affine theory with con- 
straints. It corresponds to the relaxation of  all of  the Riemannian constraint 
except the single vector constraint 

oi C = eu & (81) 

(which is not projectively invariant, so that the inconsistencies mentioned above 
are avoided). The resulting field equations are 

S i = 0 (82) 

P I j  i = g(A/ j  i -/~[ i(~] k] ) (83) 

G (i/) = K roi/  (84) 

Contraction of  (83) identifies the constraint force and the dilation current 

Substituting back in (83) gives 

e~]i = ~ (A~ji _ 2 8 I~ a i l  ) (86) 

Thus the Palatini tensor, and hence the contort ion and the traceless part  of  
nonmetricity,  are determined by a traceless combination of the hypermomen- 
turn. Since Si = 0, this determines the whole connection. The resulting theory 
is mathematically consistent. It is equivalent to Sandberg's theory; only the 
viewpoint is different. In the Sandberg formulation, the matter  Lagrangian was 
artificially contrived to be projectively invariant, by coupling the matter  to *P 
instead of to F. In our formulation, true minimal coupling to P is maintained, 
but the constraint ensures that P is equal to *P. The implausibility of  both  
versions of  Sandberg's theory is highlighted by the fact that  the dilation current 
is responsible for the constraint force that keeps the torsion vector (instead of  
the physically related Weyl vector) zero. 8 

8In the Weyl-Cartan space-time without contortion, (see I, Table I), the Weyl vector Qi 
and the torsion vector S i are proportional to each other, but this is a very special kind of 
space-time in which all other non-Riemannian parts of the connection are absent. In gen- 
eral, there is no relationship between the Weyl vector and the torsion vector in a metric- 
affine space-time. 
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In view of these criticisms, a more viable Sandberg-type prescription would 
be the adoption of the volume-preserving connection tF  for forming the covari- 
ant derivatives in the Lagrangian density (1 [2~) 6~ + s since this connection de- 
fined in (9) does have an important geometrical meaning which is related to the 
idea of projective invariance. The theory that then arises is identical to the 
one obtained by the relaxation of all constraints except 

g = �89 e~XiQi (87) 

in (58). The field equations of this theory are 

Qi = 0 (88) 

ptii~ = t~(A1iii _ �88 ~i k ~i) (89) 

eG (ij) = ~ [er o i] + �88 k) gq] (90) 

Contraction of (89) shows that the constraint is provided by the dilation current: 
O ,  
,v = A  i (91) 

Note that this constraint is part of the full Riemannian constraint found in I, 
equation (58), whereas the constraint (85) of the Sandberg theory is not. 
Because of (89) and (91), we have 

pt j i  = ~(A~ii _ �88 61kAi) =: K-~Ji (92) 

Thus the whole of the volume-preserving connection ?F is determined by the 
traceless part of the hypermomentum. Substituting (91) in (90), the field equa- 
tion coming from the metric takes the form 

eG (ij) = ~ [e r oii + �88 g/i~k(eAtC)] (93) 

w The FuU Metric-Affine Theory 

The theory with a single vector constraint ensuring the vanishing of the Weyl 
vector, in which the whole of the shear current becomes dynamically active in 
determining the geometry, see (92), and in which, according to (91), the dilation 
current provides the constraint force which keeps the Weyl vector to zero, is 
the nearest approach we can obtain to a theory with fully independent metric 
and affine properties, as long as we insist on the hypothesis that the whole o f  
the gravitational part o f  the Lagrangian is the curvature scalar. 

In the context of investigations in the macroscopic domain of physics, the 
Einstein theory appears to be completely adequate for explaining the experi- 
mental results, including the most recent experiments in hinar-laser-ranging 
[25], and the introduction of a connection with independent nonmetric aspects 
appears to be unwarranted. However, on the level of microscopic physics, the 
situation is quite different. Clearly, as we probe to smaller and smaller space- 
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time separations, we naturally encounter the question of the interaction of 
geometry (the gravitational field) with the other fundamental forces of nature. 
We now know that a particle in the form of an extended object with orbital 
angular momentum, freely falling in a classical gravitational field, is subjected 
to Mathisson-type forces [26] that cause deviations from geodesic motion. 
Thus, in order to avoid the unlikely conclusion that the orbital angular momen- 
tum interacts with geometry but the intrinsic angular momentum does not, the 
constraint preventing the spin current from being dynamically active, at least, 
should be relaxed. Thus the generalization of GR to an EC-type theory in a 
U4 space-time with nonvanishing torsion appears more or less inevitable. 

The role of nonmetricity in physical systems has until recently been more 
obscure. However, the importance of scale invariance in electroweak interactions 
[27] suggests a relationship between the dilation current of matter and a non- 
vanishing Weyl vector. The tracefree part of the proper hypermomentum (shear 
plus spin) has recently been seen to provide the generators of the SL(3, R) 
algebra possibly underlying the phenomenon of Regge trajectories (Hehl, Lord, 
and Ne'eman [5]). 

The relaxation of the Riemannian constraint can be considered to take place 
in stages, as we go to observations involving higher energies, the relaxation of a 
constraint becoming significant at the characteristic energy at which the degree 
of freedom released by the relaxation becomes physically active. Thus, we would 
expect the spin current to become dynamically active at low energies, whereas 
the shear current would not become important until intermediate energies of the 
order of perhaps a few hundred MeV corresponding to the mass differences 
associated with the AJ = 2 excitations of the Regge trajectories. The scale 
invariance is associated with the zero mass limit, or equivalently, the ultra- 
relativistic limit corresponding to energies in excess of several tens of GeV. In 
view of these considerations, it becomes clear why an EC-type theory has physi- 
cal significance, whereas the theory with nonmetricity but no torsion outlined 
in Section 6 does not - the  torsion effects belong to a lower energy domain than 
the effects of nonmetricity. A theory with a single vector constraint, keeping 
Qi = 0, like the one described at the end of the previous section, would be ex- 
pected to describe the interaction between matter and geometry at intermediate 
energies. 

The conclusion from the above arguments is that, at very high energies 
where scale invariance occurs, the dilation current becomes active and the 
interaction between matter and geometry would be described by a full metric- 
affine theory, without constraints. The metric and connection are then com- 
pletely independent and all components of the hypermomentum current are 
dynamically active. 

In order to construct such a theory, however, the curvature scalar 6~ is not 
adequate as a gravitational Lagrangian. Equation (1) has to be replaced by a 
more general scalar density involving the metric and connection, and it should 
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not be projectively invariant (or have any invariances other than coordinate 
transformation invariance). On the other hand, it should reduce to GR or to a 
theory experimentally indistinguishable from GR, when the complete Rieman- 
nian constraint is operative. 

A simple solution was suggested by Hehl, Kerlick, and Von der Heyde [5] ; 
we can add a projectively noninvariant Lagrangian for the Weyl vector. For ex- 
ample, by postulating that the Weyl vector is the field of  a conventional massive 
boson: then the gravitational Lagrangian reads 

(3= e (-~ gilRij + otQijQil + ~QiQ i) (94) 

where Qii := 8l iQ]]. Note that an electromagnetic-type Lagrangian fl = 0 would 
still be invariant under the special projective transformations with Xi = aiX, 
so that a single scalar constraint would remain (the divergence of  the dilation 
current remains dynamically inactive). 9 The choice suggested by the above- 
mentioned authors was ot = 0,/~ =~ 0. A highly interesting alternative has been 
proposed recently by Papapetrou and Stachel [28] : they add the term, gq~iF], 
to the curvature scalar, thereby also getting rid of  the projective invariance.l~ 
Aldersley [29],  in a most interesting investigation, has shown that, under cer- 
tain suitable conditions, only W 2 terms are allowed to supplement 6~ in (94). 
Other attractive options have been discussed by Ne'eman and Sija6ki [5]. 

Of course, an ad hoc prescription like (94) is not very convincing, and can- 
not be regarded as a final answer. A more fruitful approach might be to abandon 
6~ as a piece of  the gravitational Lagrangian and to investigate other possibilities. 

Recently an anholonomic geometrical framework for a gauge theory of the 
Poincar6 group has been developed yielding a U4 (with zero nonmetricity) as 
the appropriate space-time (see [30] and references given there). The class of 
Lagrangians leading to quasilinear second-order field equations for the gravita- 
tional potentials turns out to be a second-order polynomial in torsion and curva- 
ture. With a specific Lagrangian quadratic in torsion and curvature one finds, 
on imposing a teleparallelism constraint, a gravitational theory which is experi- 
mentally indistinguishable from GR [31 ] .  The full theory in linear approxima- 

9 One simple modification of the curvature scalar ~, that does not suffer from the ad hoc 
postulate (94), is based upon the similarity between volume-preserving, and therefore 
metric-dependent, transformations of the connection and conformal transformations of 
the metric (Smalley [21 ] ). The procedure leads to a metric-affine theory with an active 
dilation current. However, the Weyl vector is constrained to be equal to the gradient of 
the scalar conformal factor, and as a result is curl-free and thus not the most general pos- 
sible Weyl vector. 

1~ alternative, and perhaps more natural method to arrive at the Papapetrou-Stachel 
Lagrangian, has been given recently by Stachel (private communication). He used the 
idea of transposition invariance (see Einstein [4], Appendix II) in constructing their 
Lagrangian. 
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tion (even without the metric constraint) embodies, in addition to the Newtonian 
potential, a rising confmement-type potential. 

For the four-dimensional aft'me group this gauge theoretical anholonomic 
framework can be readily extended to the corresponding metric-aft'me space- 
time (L4, g) (Lord [5] ) leading in this way to the full metric-affine theory in an 
anholonomic setup. The purely quadratic Lagrangian mentioned above is, if 
formulated in an (L4, g), not projectively invariant and could be a possible 
substitute for our ansatz (94). This appears to us to be the most promising 
starting point for an attempt to unify gravity with high-energy physics. 
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Note Added in Proof 

For the variational principle one should also compare Bruzzo [32]. The 
choice of the Lagrangian in metric-affine gravity is discussed in the interesting 
articles by Kfimpfer [33] and Sijacki [34]. 
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