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The metric-affine gravitational theory is shown to be the gauge theory of the affine group, or equivalently, the gauge 
theory of the group GL(4, R) of tetrad deformations in a space-time with a locally Minkowskian metric. The identities of 
the metric-affine theory, and the relationship between them and those of general relativity and Sciama-Kibble theory, are 
derived. 

There has been recently a great deal of interest in 
the application of the Yang-Mills idea to space-time 
symmetries. Kibble derived the Sciama-Kibble theory 
[1,2] by gauging the Poincar6 subgroup of the infini- 
tesimal coordinate transformations. The extension of 
this procedure to larger groups of infinitesimal coordi- 
nate transformations has been worked out by Harnad 
and Pettitt [3]. Poincar6 gauge theories have also been 
given by yon der Heyde [4] and Cho [5]. In yon der 
Heyde's approach the translational subgroup is identi- 
fied with the action of  parallel transport of the physi- 
cal fields. This leads to a much clearer understanding 
of the geometrical meaning of the Poincar6-gauge 
idea. The Poincar6-gauge idea has been extended to 
gauge theories of the de Sitter and conformal groups 
and the corresponding supersymmetries [6,7]. How- 
ever, in view of the fact that the group SL(3,R) of  de- 
formations of hadronic matter can explain the ob- 
served structure of the Regge trajectories [8], the af- 
f ine group would appear to be a physically more rele- 
vant extension of the Poincar6-group [9]. The affine 
gauge theory turns out to be identical with the metric- 
affine gravitational theory of Hehl et al. [ 10]. In the 
tetrad version of the metric-affine theory to be pre- 
sented here, the tetrad (translational gauge potential) 
couples to the canonical energy-momentum density 
and the connection (gauge potential for tetrad defor- 
mations) couples to the canonical hypermomentum 
current density. 

1. Gauging the tetrad deformations. The geometri- 
cal structure that we propose is the following. Consid- 
er a space-time with a metric and introduce a tetrad 
field (not necessarily orthonormal). A change of tetrad 
is specified by a position-dependent non-singular 4 
× 4 matrix. Thus we have a local group GL(4,R) of 
tetrad "deformations", for which we postulate the 
existence of a gauge potential. We set up a lagrangian 
field theory and require it to be covariant for both 
coordinate transformations and tetrad deformations. 
Let ei~ be the matrix of components of the tetrad 
and denote its inverse by e~ i (holonomic or coordi- 
nate-based indices are denoted by L J, ... and anholo- 
nomic or tetrad-based indices are denoted by t~,/3, ... ). 
Let ¢ be the set of anholonomic components of a 
physical field, with the linear transformation law ~i~ 
= e # a f ~ ¢  under the infinitesimal tetrad deformation 
6el ~ = e#aei ~ (fermion fields will correspond to an in- 
finite-dimensional representation of G t  (4,R), which 
has no finite-dimensional spinor representations [9]. 
The deformation gauge potentials Xit3 a of GL(4,R) 
enter into the covariant derivative 

:= 3i¢ + xi~f~¢. (1.1) ¢,i 

The deformation gauge fields are 

R J  := - 0 + - x J x j  (1.2) 
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The X/0n are the anholonomic components of an af- 
fine connection, whose holonomic components are 

Fik / := (Xigaek # + a f l g a ) e j .  (1.3) 

Then Rijkl : = Ri/oaek3ea I are the components of the 
curvature tensor belonging to this connection. Under 
the simultaneous action of an infinitesimal coordinate 
transformation x i -> x 'i = x i - ~! and an infinitesimal 
tetrad deformation e¢ a, we have 

~eia = epai~/  + ~/O/ei a + eia , (1.4) 

2. Gravitational source identities. Let 22(gii, eia, 0, 
¢,~ be a lagrangian density for a set of matter fields ~. 
Since we do not require the tetrad to be orthonormal, 
the eft  and the metric components gi/are a priori in- 
dependent. We have 10 + 16 + 64 = 90 "gravitational" 
components gii, ei~, ~i3 ~" The total lagrangian density 
will be of the general form q~ + 22, where c)5 is the 
gravitational lagrangian density, constructed from the 
90 gravitational components and their derivatives. We 
study the structure that arises from the requirement 
that the theory shall be covariant for coordinate trans- 
formations and tetrad deformations. Note that our 
results are not  dependent on the actual functional 
form ofC~. 

We define sources of the gravitational components: 

9i1 := 2~22[6g i], ~ i  ~ := 622/~eai , ~a  3i := ~22[6)~i34 , 

(2.1) 

and we also define 

~r:= 8 2218~. (2.2) 

The transformation laws (1.4) are supplemented by 
the transformation law of the metric: 

6gii = ~¢i + ~J, i" (2.3) 

(Here the definition of the comma derivative has been 
extended - when operating on holonomic sets of com- 
ponents, the Christoffel symbol derivative is implied.) 
The required covariance properties lead to the follow- 
ing 4 + 16 identities satisfied by the source - an ener- 

g y - m o m e n t u m  identity coming from coordinate invar- 
iance and a hypermomentum identity coming from in- 
variance under tetrad deformations: 

( 9 / +  ~ / ) , j -  ~ e p , i +  ~a~iR/i~ a + ~ . ¢ i = 0 ,  

(2.4) 

~ J i ,  i -  ~a ~ + fir'fa#(9= O. (2.4) 

Of course, a similar treatment of the total lagrangian 
density c)) + 22 will lead to analogous identities satis- 
fied by the field equations: We therefore have 90 gravi- 
tational equations satisfying 20 identities, so the gravi- 
tational field of this gauge theory has 70 dynamically 
independent components. The twenty degrees of free- 
dom associated with the reference system can be elim- 
inated by imposing four coordinate conditions and six- 
teen restrictions on the tetrad. This corresponds to the 
fact that the tetrad can be chosen arbitrarily. 

If 22 is a scalar density for coordinate transforma- 
tions and invariant for tetrad deformations, then 9 i/ 
+ 9 / i s  the canonical energy-momentum density and 
~aOi is the canonical hypermomentum current den- 

sity: 

9 / ,  9/-- =: v z/, 
(2.6) 

3. Special gauge conditions. Let us choose the tetrad 
so that eia = 6ia. We refer to this as the holonomic 
gauge condition. It is preserved by the simultaneous 
action of a coordinate transformation $i and a tetrad 
deformation et~a = _~O~a. All indices (latin or greek) 
can now be regarded as holonomic, and the gravita- 
tional field is described by a metric gii and a connec- 
tion Fiik : 

g i  j = 26 22/~g#', ~k ji = ~22[6I'iik. (3.1) 

We have 10 + 64 gravitational equations satisfying 4 
identities (obtained by eq. (2.5) as a definition of ~ t ~  
and substituting this into eq. (2.4)). We now have the 
L4(g) framework of the metric-affine theory. 

Another kind of special gauge is an orthonormal 
gauge, obtained by requiring the tetrad to be ortho- 
normal: 
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gq = eal eJ*ff# , (3.2) 

where 7/'~ is the matrix of the Minkowski metric. 
When working within this framework, the group 
GL(4,R) of tetrad deformations is restricted to its 
Lorentz subgroup. The metric components are now 
not independent of the tetrad, and we have 16 + 64 
gravitational equations satisfying 4 + 6 identities. In 
this formulation, the tetrad is not coupled to ~ i s as 
in eq. (2.1), but to the canonical energy-momentum 
density X/r~ Y.ff. The source identities are 

(V:Z-g ~i/),/- (~ Ji, i + ~" " fof ~)ejep, i 
(3.3) 

+ ~a#/R/i# ~ + ~ "  ¢,i = O, 

rfftag~ali. , i -  x/-L-g Y't~al + 5r "fl~#] ~b = 0 . (3.4) 

It is to be emphasised that the use of different 
special gauges gives different but equivalent formula- 
tions of the same theory, namely the metric-affine 
gravitational theory. 

4. Constraints on the connection. In the previous 
section, we have assumed that all the components are 
dynamically independent fields. However, if instead 
we choose to construct some or all of these quantities 
from the metric, the tetrad, and their derivatives, we 
shall obtain an alternative theory, more restricted than 
the general metric-affine theory. For example all the 
Xi# ~ could be constructed according to 

~.~ = (~iej  + {/k}e~k)ep, 

instead of introducing them as independent fields. This 
is equivalent to introducing the constraint 

Fik j --(/k) -- ejek~,i  = 0 

on the metric-affine theory [11 ]. Working in the holo- 
nomic gauge, we have just 10 gravitational equations 
satisfying 4 identities. We have clearly obtained the 
riemannian framework of Einstein's gravitational theo- 
ry. The metric is now not coupled to 9iJ, but to 

Q3 ii :=  N / r ~ i ]  + (~[il]/ + ~ [fl]i + ~[ / i ]  l), i 
(4.1) 

and the source identities reduce to 

cB/" + ~ "¢,i ÷ ( ~:" fiJ~)d = 0.  (4.2) t,l 

When the field equations 5 r = 0 are satisfied, we have 
the usual energy-momentum conservation for the 
symmetrised Belinfante energy-momentum. The 
skewsymmetrised hypermomentum current density 
appearing in eq. (4.1) is of course the spin current 
density. 

Consider now the less severe constraint Xi(aO) = 
~i(gjkejeok ) which is equivalent to the vanishing 

of non-metricity : 

Qiik := 3kgij -- 2I'k(03 = 0.  (4.3) 

Only the 24 components Xi[a¢ l of the gauge potential 
are now dynamically independent. In an orthonormal 
gauge, these are the components of the potential for 
the Lorentz rotations of the tetrad; we have the U 4 
formalism of Poincar~ gauge theory (or Sciama-Kibble 
theory) with 16 + 24 gravitational equations satisfying 
4 + 6 identities. The source identities are obtained by 
imposing the constraint (4.3) on eqs. (3.3) and (3.4). 
We find 

(4.4) 
+ 5r. ¢,i= 0 ,  

9[,~Ol/,/_ x / -~z t~a l  + 5r. f[a#l ¢ = 0 ,  (4.5) 

where si/k := F[i/] k is the torsion. With 5 r = 0, these 
are the identities given by von der Heyde [4] and 
Kibble [11. 

5. The affine gauge theory. The transformations 
(1.4) were introduced as combined coordinate trans- 
formations and GL(4, R) gauge transformations. They 
can be reinterpreted as affine gauge transformations. 
That is, as transformations of a gauged inhomogeneous 
linear group. The translations generate parallel trans- 
port of the physical fields and the tetrad is the gauge 
potential for the translation subgroup. To establish 
this, consider first the formalism for an internal sym- 
metry group G, with generators f A , acting as a gauge 
group. Let q~ be a set of physical fields transforming 
linearly under the group, 8~b = e¢ := eAfA~, with co- 
variant derivative ~;i := ~l~ + k~ ,  where ki :  = X ~ f  A 
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is the gauge potential for G. The gauge fields will be Fij 
:= ~ j ~ / -  ~ i~  + [X/~'] = F i f 4 f A .  Under the simultaneous 
action of  an infinitesimal coordinate transformation x i  
_> x ' i  = x i _ ~i and an infinitesimal gauge transformation 
with parameters e 4, we have 

= + = + e;i, 

or, in terms of  the covariant derivative, 

(5.1) 

8~ = ~;~ + ~, ~ = ~iFi/-  ~;i' (5.2) 

where ~ : = e - ~i~/. The transformation associated with 
the parameters ~i is now interpreted actively  as a parallel 
transport of  the fields ¢, so that eq. (5.2) represents a 
parallel transport together with a gauge transformation 
with parameters ~A." Now let 2~?(gij, k / l  , (9, aiq) ) be a 
lagrangian density for the matter  fields ~. Covariance of 
its field equations under eq. (5.2) implies the source 
identities 

9/~+~AJS-~ * ~ '* ;c-  o, ~ ' + ~.G~,= o A ;i 

(5.3) 

where ~ A  i := ~Z?/5~/1. 
Now let G be the 20-parameter affine group defined by 

tc, t o = , 4 ] =  0, 

(5.4) 

but identify the "internal translations" with parallel 
transport. That is, ~a= _~ j~ , ,  or e a = 0. This restricts 
the identities (5.3) to the set 

9 / j  + ~ a J #  A , ~r. % - x ~ ( ~ f l j  , ~ .  f~¢) = o ,  
(5.5) 

; r . f  o 

I f  we now write ei = : = - ~/= and introduce a c o m m a  
derivative for the covariant differentiation associated 
with the homogeneous part of  G, we fmd that  eq. (5.1) 
(with e ~ = 0) is identical with eq. (1.4) and eq. (5.5) 
is identical with the set (2.4), (2.5). The gauge fields 
for the homogeneous part  o f  the group and for the 
translations are respectively the curvature and the 
torsion: 

F..a a (5.6) Fij#a = Ri j#a'  t! = 2Sij " 

Thus we have established that the metric-affme 
theory is an affine gauge theory, in the same sense 
that the Kibble-Sciama theory is a Poincar6 gauge 
theory (the only difference is that the metric appears 
as an extraneous field, whereas in the Poincar6 gauge 
theory it is determined by the translational gauge po- 
tentials). 

As we have seen, the affine extension of Poincar6 
gauge theory is particularly straightforward - it is de- 
void of  the additional complications (second-order 
frame structure) of the conformal gauge theories. More- 
over, the affine group contains both  scale transforma- 
tions and the group SL(3,R) whose Lie algebra (gen- 
erated by hypermomentum)  appears to be responsible 
for the basic structure of  the Regge trajectories. This 
is a strong indication that the metric-affine gravitation- 
al theory (which goes over into Einstein's theory in 
the "macroscopic" limit) is the appropriate extension 
of Einstein's theory in the "microscopic" domain. 
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Also the von Humboldt  Foundation for the award of  
a fellowship. 
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