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We derive Einstein 's  field equat ion by means  o f  a metric-affine varmtmnal  principle with an exphcIt R lemanman  
constraint.  The corresponding Lagrange multiplier,  the  h y p e r m o m e n t u m  current,  should be a measure  for the micro- 
scoplc vIolatmn of  the  constraint.  We relax the  Riemannlan constraint  and arrive at the metric-affine theory of  gravi- 
tation. 

1. Metric-affine theory o f  gravitation. In the recent- 
ly proposed new metric-afflne theory of gravitation 
[1-4] ,  the gravitational field is described by the met- 

(= g/i) and the linear connection P k (4: I'jk.) rlc gtl o f  

spacet~me. Both the momentum current roi/, conven- 
tionally called the energy-momentum tensor, and the 
newly recogmzed hypermomentum c u r r e n t  Aklt act 
as sources of the gravitatmnal field. If q;  (g, Og, P, 
~F) is the gravltanonal field Lagrangxan, then the two 
field equations read t l  (k = gravitational constant) 

6__~ = _ ke toO, ~clY - 2keAklZ . (1, 2) 
6 g~! ~ pk 

t] 

The first field equation with its 10 independent 
components is the analog of Einstein's equation, the 
second field equation has 64 independent components 
and generalizes the Chnstoffel relation P~ - {k.} = 0 
known from conventional general relativity theo- 
ry (GR). 

We have shown that the hypermomentum current 
may be spht into the intrinsic dilation current At 
:= Aili, the intrinsic shear current ~ i l k  : = A( i l )k  
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-gtlAk/4, and the spin current rq k := A[ t/] k. Further. 
more, GR is contained in eqs. (1,2)  for vamshlng hy- 
permomentum, provided we take [1,2] 

Cj= gllRkok + [3QtQt (3) 

as gravitational field Lagrangian./3 is a dimensionless 
universal constant (f3 4: 0), Rqkt the curvature tensor 
and Qt the Weyl vector (see below). If only the shear 
and the dilation currents vanish, then we recover the 
U 4 theory of gravitation (see [6]), which is now an 
established theory. Since the metnc-affine theory en- 
compasses the Einstein and the U 4 hmit, it is a well- 
defined and viable extension of GR. Additionally, its 
structure, in particular the couphng of hypermomen- 
tum to the linear connection, looks very convincing. 

In the following we would hke to present more 
evidence in favor of the metnc-affine theory. 

2. Metric-affine variational principle with Rieman- 
nian constraint. We analyze conventional GR with 
the help of a variational principle with independent 
metric and connection. We force the geometry of 
spacetime to stay Riemannian, however. For more 
details and references compare [7], see in this context 
also the imporant work of Kopczyfiski [8] and Traut- 
man [9]. 

The model of spacetime is an (L 4, g) with inde- 
pendent metric and connection. Define the torsion 
tensor silk : = F [k l, the nonmetricity tensor Qiik 

F 
: = Vigik , the Weft_vector Qz : = Qil 1/4 and the trace- 
less nonmetriclty Qi/k : = Qilk - Qzg/k" Then the 
linear connection may be written as 
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F • t l  = klAabC~o "2 -- 
g" lil ~" agbc / Sabc + Qagbe/2 + Q'abc/2) o 

(4) 

The first term represents the Chnstoffel symbol (k) 
of GR. 

r 
Let £? = eL ('I,, 7~ ,  g) be the material Lagrangmn 

minimally coupled to the (L 4, g) and Ri]kl(P) the 
curvature tensor of  the (L 4, g). Consider the varia- 
uonal prlnmple 

6g, r,X,.fd4x e [g6Rkvk + C 1 + L ( * ,  ~ ,  g)] = 0 

(5) 

with the constraint term 

Z~k Ii IS a Lagrange multipher. We define roy:  = 
(2/e)SZ?/6gi] as the momentum current and AkJi:= 
(--1/e)gfd/6Pq k as the hypermomentum current. In 
eq. (5) variation with respect to ~ and F gives 

r .  k,~ = (~}, £k/ '  = a ]  ~ . (7, 8) 

In determining the Lagrange multiplier in eq. (8), we 
have already used eq. (7). Variation in eq. (5) wath 
respect to g and using eqs. (7, 8) leads to the Ein- 
stein equation (G u = Einstein tensor) 

1 a q ( {  ) ) =  roiJ + {V}k(A ](k') + A t(lk) - Ak(q)) . (9) 

The right-hand side of  eq. (9) is the conventional 
metric energy-momentum tensor of  GR, see [7]. 

Instead of  the constraint term C 1 m eq. (5), we 
could have used the alternanve expression 42 

C2 • = 2~/ Qi + 1-~klit o + ~kJi~f S l k (10) 2 ~qk  

°i ~kfl, ~Mi. Observe that with the multipliers v ,  and 
~k ki -~ O, 9k[/0 --- 0, ~k (li) ----- O. The nonmetnci ty  and 
the torsion m eq. (10) refer to the new volume pre- 
serving connection 

,2 The c o n s t r a i n t s  ~fStlk = 0 a n d  ~Qqk = 0 are both projec- 
twely mvarmnt, m contrast to the constraint Qt = 0, which 
breaks projectwe invarmnce. 

t F k  k 1 k (11) = F~/ -  ~ Qi6/• 

Note ~) = tQ.  The conditions (Qt = O, t Q = O, t S = O) 
are necessary and sufficient for F = ( }. Consequently 
C 2 is equivalent to C 1 . In particular we find 

Aiik = gi/~,k/4 + ~,ijk _ ~ltlk . (12) 

In both ways, wnh C 1 or with C2, respectwely, we 
recover the field equation of  Einsteinian GR. We col- 
lect or results' 

[GR] plus [metric-affme way of looking at Rlemanman geom- 
etry] 

[constraint "force", the Lagrangian of which is 
Ca or C:] • (13) 

3. Meaning o f  the Lagrange multiplier. In sec. 2 we 
only rewrote GR in a different mathematical frame- 
work. Nothing happened from a physical point of  
view. 

But it is known from classical mechamcs that a 
Lagrange multiplier is closely related to the constraint 
force which upholds the constraint. That is, C 1 or C 2, 
respectively, are the Lagranglans representing these 
constraint forces in relation (13). It ~s consistent wath 
this interpretation that on the right-hand side of the 
Einstein equation (9) the Lagrange multiplier supplies 
energy to the source of  the gravitational field via the 
hypermomentum Al/k (compare eqs. 8, 12). Conse- 
quently we may state that 

AkB keeps Pl k Riemannlan. (14) 

Broadly speaking, for matter with non-vanishing 
hypermomentum, there exists the problem of  confin- 
ing this matter within the Riemannian spacetime +a. 
Thereby we arrive at a natural interpretation of  the 
Lagrange multiplier ZXk]Z and the hypermomentum 
c u r r e n t  AkJi. 

But we can go one step further: no constraint in 
physics is completely rigid; the norton of  rigidity ap- 
pears only within the domain of  some approximation. 
Moreover, rigid spacetime structures are in any case 
contrary to the spirit of  GR (Einstein [10], pp. 36, 
94). If one looks into the formalism of classical mech- 
anics, one finds that the Lagrange multiplier is " . . .  a 
measure o f  the microscopic violation o f  the equation 

.3 This statement needs some qualification, see [7]. 
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of constraint" (Lanczos [11], p. 144). Thus, we ex- 
pect that hypermomentum,  which is a Lagrange mul- 
tipher of  order fi, is a measure of the microscopic vio- 
lation of the Riemannian constraint m GR. 

We expect a violation of  the metric constraint Q 
= 0 and of the symmetry constraint S = 0 at the same 
time, since the arguments advanced above do not dis- 
tinguish between these two constramts. In [ 1 ] we 
argued that allowing non-metric spacetimes (Q =/: 0) 
in the way we do it, should not lead to  dffficultxes. 
Hayashi [ 12] reconsidered our arguments but  
doubted our conclusions. We hope to have shown that 
there seems to be no way around a m~croscopic viola- 
tion of  the Q = 0 constraxnt, provided we have a non- 
vanishing intrinsic dilation or shear current. 

4. Relaxation of  the Riemannian constraint. In 
analogy to classical mechanics, we propose to relax 
the Riemanman constraint.  In going over from rigid 
body dynamics to cont inuum physics, the constraint 
force keeping the body rigid becomes a real intrinsic 
physical force (or rather stress). In the same way, dur- 
ing the relaxation process, hypermomentum loses its 
passive role that it had within GR and becomes a new 
source of the gravitational field m the metric-affme 

theory of  gravitation. 
If we take the variational principle (5) with the 

constraint term C 2 from eq. (10), then we can relax 
i 'Q = 0 and t S  = 0 straightforward by just dropping 
the corresponding terms in the Lagrangian. However 
we note that gi/~Rklik = giIRk~/k. Hence the relaxa- 
tion of the remaining constraint,  Q~ = 0, requires a 
new piece in the gravitational field Lagrangian depend- 
ing on Qi, otherwise we run into mconststenc~es. One 
possible choice which is near at hand, is the choice of  
a Q2-term, as we did in eq. (3). But this point  needs 

further investigations. 

Consequently in relaxing t Q = 0 and t S = 0 we can 
just take the analog of  the usual Halbert-Einstein field 
Lagrangian; however, m relaxing Qi = 0, we need a new 
physical principle. This is suggestive since relaxation 
of Qi = 0 may be related to the mass-zero limit of  
matter.  

We are grateful to Paul vonde r  Heyde for discus- 
sions and to Professor Peter Mlttelstaedt for support.  
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