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We derive Einstemn’s field equation by means of a metric-affine variational principle with an exphcit Riemannian
constraint. The corresponding Lagrange multiplier, the hypermomentum current, should be a measure for the micro-
scopic violation of the constraint. We relax the Riemanman constraint and arrive at the metric-affine theory of gravi-

tation.

1. Metric-affine theory of gravitation. In the recent-
ly proposed new metric-affine theory of gravitation
[1—4], the gravitational field 1s described by the met-
ncg, (= gji) and the linear connection I’fg (# F]’.‘l.) of
spacetime. Both the momentum current Tg¥, conven-
tionally called the energy-momentum tensor, and the
newly recognized hypermomentum current A,/? act
as sources of the gravitational field. If V (g, og, T,
aI") 1s the gravitational field Lagrangian, then the two
field equations read ¥' (k = gravitational constant)
%19; — ke To¥l, ~§2k = 2keA, .

&y 8[‘1].

(1,2

The first field equation with its 10 independent
components is the analog of Einstein’s equation, the
second field equation has 64 independent components
and generalizes the Chnistoffel relation 1"{]‘- — {g.} =0
known from conventional general relativity theo-
ry (GR).

We have shown that the hypermomentum current
may be split into the intrinsic dilation current Al
1= Ajl, the intrinsic shear current A¥K : = AUDK
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#1 Our conventions are. Latin mdices i,j .runfromOto 3,
Greek indices o, 8 . from 1 to 3. Symmeirization and anti-
symmetrization are denoted by () and { |, respectively.
The definition sign 1s =. Covariant differentiation with
rlgspect to the asymmetric connection I';, is denoted by

Vy» partial differentiation by 3. Furthgrmore, we use a
tensor Aal?c = 6;‘8 f’ﬁf + 8?5;’810 - 6‘;61 6?, producing per-
mutations of the Christoffel type. Compare always

Schouten [5]. e =Idet.g,,|1/2 .
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— g Ak/4,and the spin current 79k ;= AlYT%, Further.
more, GR is contained in egs. (1, 2) for vanishing hy-
permomentum, provided we take [1, 2]

Lo giR, < +60,0" 3)

as gravitational field Lagrangian. §1s a dimensionless
universal constant (8 # 0), Rl]kl the curvature tensor
and @, the Weyl vector (see below). If only the shear
and the dilation currents vanish, then we recover the
U, theory of gravitation (see [6]), which 1s now an
established theory. Since the metric-affine theory en-
compasses the Einstein and the Uy limit, it is a well-
defined and viable extension of GR. Additionally, its
structure, in particular the couphng of hypermomen-
tum to the linear connection, looks very convincing.

In the following we would like to present more
evidence in favor of the metric-affine theory.

2. Metric-affine variational principle with Rieman-
nign constraint. We analyze conventional GR with
the help of a variational principle with independent
metric and connection. We force the geometry of
spacetime to stay Riemannian, however. For more
details and references compare [7], see in this context
also the imporant work of Kopczyriski [8] and Traut-
man [9].

The model of spacetime 1s an (L4, g) with inde-
pendent metric and connection. Define the torsion
tensI?r Sk = 1"[51 , the nonmetricity tensor Q.
1= V;gjx» the Weyl vector Q, : = Q;}!/4 and the trace-
less nonmetricity Qy © = Qyix — Q,8jx- Then the
linear connection may be written as
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1*5; =gklAabC(aagbc/2 . S

il be + Qa gbc/2 + Qabc/2) :

(4)

The first term represents the Christoffel symbol {z.}
of GR. r

Let 2 = el (¥, V', g) be the matenal Lagrangian
minimally coupled to the (L4, g) and Ri]-kl(l‘) the
curvature tensor of the (L4, g). Consider the varia-
tional principle

i I
Sor o [dixe (@R K+ ¢+ L, V¥, 9] =0
(5)

with the constraint term

¢, = &MTE - (%) (6)

Ay Hisa Lagrange multiplier. We define Tgy. =
(2/e)5£/6g, as the momentum current and A,/ :=
(- 1/e)6L/61" k as the hypermomentum current. In
eq. (5) vanatlon with respect to A and T gives

rf= {5, RJr=ak" (7, 8)

In determining the Lagrange multiplier in eq. (8), we
have already used eq. (7). Variation in eq. (5) with
respect to g and using egs. (7, 8) leads to the Ein-
stein equation (G, = Einstem tensor)
%G’J({ }) =Tl + g]};((Af(kl) + AUR) _ Ak(l])) . 9)
The right-hand side of eq. (9) 1s the conventional
metric energy-momentum tensor of GR, see [7].
Instead of the constraint term C) 1n eq. (5), we

could have used the alternative expression

_ AD 10kit o jite k

=29Q, + 1pkri O itk 'Sy (10)
with the multipliers $i pkit and kit Observe that
p ki=0, Pkl =0, f, U =0. The nonmetricity and
the torsion 1n eq. (10) refer to the new volume pre-
serving connection

+2 The constraints 1§ lk =0 and TQ, i = 0 are both projec-
tively tnvanant, in contrast to the constramt Q, =0, which
breaks projective invariance.
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k_pk_1 k
TF;]—F]—EQiﬁj' (11)
Note Q = Q. The conditions (Q, =0, TQ =0, TS =0)
are necessary and sufficient for I' = { }. Consequently
C, is equivalent to €. In particular we find

Al]k —~ l]°k/4 +5 oijk ﬁz]k . (12)

In both ways, with Cy or with C,, respectively, we
recover the field equation of Einsteinian GR. We col-
lect or results:

[GR] plus [metric-affine way of looking at Riemannian geom-
etry]
~ [constraint “force”, the Lagrangian of which is

Cy or Cs) . (]3)

3. Meaning of the Lagrange multiplier. In sec. 2 we
only rewrote GR in a different mathematical frame-
work. Nothing happened from a physical point of
view.

But 1t 1s known from classical mechanics that a
Lagrange multiplier is closely related to the constraint
force which upholds the constraint. That is, C} or G,
respectively, are the Lagrangians representing these
constraint forces in relation (13). It 1s consistent with
this interpretation that on the right-hand side of the
Einstein equation (9) the Lagrange multiplier supplies
energy to the source of the gravitational field via the
hypermomentum A¥% (compare egs. 8, 12). Conse-
quently we may state that

Akj ! keeps I‘l]; Riemannian. (14

Broadly speaking, for matter with non-vanishing
hypermomentum, there exists the problem of confin-
ing this matter within the Riemannian spacetime 3,
Thereby we arrive at a natural interpretation of the
Lagrange multiplier ﬁkf’ and the hypermomentum
current A/t

But we can go one step further: no constraint in
physics is completely rigid; the notion of rigidity ap-
pears only within the domain of some approximation.
Moreover, ngid spacetime structures are in any case
contrary to the spirit of GR (Einstein [10], pp. 36,
94). If one looks into the formalism of classical mech-
anics, one finds that the Lagrange multiplier is *. . . @
measure of the microscopic violation of the equation

#3 This statement needs some qualification, see [7].
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of constraint”’ (Lanczos [11], p. 144). Thus, we ex-
pect that hypermomentum, which 1s a Lagrange mul-
tiplier of order 7, is a measure of the microscopic vio-
lation of the Riemannian constraint in GR.

We expect a violation of the metric constraint Q
= ( and of the symmetry constraint § = 0 at the same
time, since the arguments advanced above do not dis-
tinguish between these two constraints. In [1] we
argued that allowing non-metric spacetimes (Q # 0)
in the way we do it, should not lead to difficulties.
Hayashi [12] reconsidered our arguments but
doubted our conclusions. We hope to have shown that
there seems to be no way around a microscopic viola-
tion of the Q = 0 constraint, provided we have a non-
vanishing intrinsic dilation or shear current.

4. Relaxation of the Riemannian constraint. In
analogy to classical mechanics, we propose to relax
the Riemannian constraint. In gomng over from rigid
body dynamics to continuum physics, the constraint
force keeping the body rigid becomes a real intrinsic
physical force (or rather stress). In the same way, dur-
ing the relaxation process, hypermomentum loses its
passive role that it had within GR and becomes a new
source of the gravitational field n the metric-affine
theory of gravitation.

If we take the variational principle (5) with the
constraint term C, from eq. (10), then we can relax
TQ =0and 'S = 0 straightforward by just dropping
the corresponding terms in the Lagrangian. However
we note that g/ TRk ,]-k = gf]RkU-k . Hence the relaxa-
tion of the remaining constraint, Q, = 0, requires a
new piece in the gravitational field Lagrangian depend-
ing on Q;, otherwise we run mnto inconsistencies. One
possible choice which is near at hand, is the choice of
a 02-term, as we did in eq. (3). But this point needs
further investigations.
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Consequently in relaxing TQ =0 and TS = 0 we can
just take the analog of the usual Hilbert-Einstein field
Lagrangian; however, 1n relaxing Q; = 0, we need a new
physical principle. This 1s suggestive since relaxation
of @; = 0 may be related to the mass-zero limit of
matter.

We are grateful to Paul von der Heyde for discus-
sions and to Professor Peter Mittelstaedt for support.

References

[1] F.W. Hehl, G.D. Kerlick and P. von der Heyde, Z. Natur-
forsch. 31a (1976), 111, 524, 823.

[2] F.W. Hehl, G.D. Kerlick and P. von der Heyde, Phys.
Lett. 63B (1976) 446.

[3] E.A. Lord, The tetrad version of the metric-affine gravi-
tational theory with GL(4) symmetry, Univ. Koln pre-
print (1977).

[4] L L. Smalley, Vartational principle for general relativity
with torsion and non-metricity, Univ. Koln preprint
1977).

[5] 3 A. Schouten, Ricci calculus (2nd ed Springer, Berlin,
1954).

[6] F.W. Hehl, P von der Heyde, G.D. Kerlick and I M
Nester, Rev. Mod. Phys. 48 (1976) 393.

[7] F.W. Hehland G.D Kerlick (1977), to be published.

[8] W. Kopczyfiski, Bull Acad. Pol Sci., Sér. Sci. Math
Astron. Phys. 23 (1975) 467.

[9] A. Trautman, Ann. N.Y. Acad. Sci. 262 (1975) 241.

[10] A Emstein, Grundzuge der Relatwvitatstheorie (2 Auf-
lage, Vieweg, Braunschweig 1960)

[11] C. Lanczos, The variational principles of mechanics (4th
ed., Unwv. Toronto Press, Toronto 1970).

[12] K. Hayashi, Phys. Lett. 65B (1976) 437.

[13] E.A. Lord, Tensors, relatwvity and cosmology (Tata
McGraw-Hill, New Delh1 1976).



