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Abstract 

It is shown that the Bargmann-Wigner equations can be written in an SO(4, 2)-covariant 
form. As well as the Lorentz rotations, the SO(4, 2) group contains a space-inversion and 
a time-reflection operator (which are different from the usual ones). It also contains the 
Foldy-Wouthuysen and Cini-Touschek transformations. The spin-s theory for the massive 
and massless cases, and also a set of Bargmann-Wigner equations corresponding to space- 
like four-momentum, are all given by the same S0(4, 2)-covariant equations, and their 
solutions can be obtained by transforming the solutions corresponding to the special 
"gauge" in which the four-momentum vanishes. 

1. Introduction 

The intimate connection between the group S0(4, 1) and the structure of  
relativistic wave equations is well known from the work o f  Bhabha (1945). 
The wave functions o f  the equations proposed by Bhabha belong to irreducible 
representations o f  the "de Sitter group" S0(4, 1 ), but  the equations them- 
selves are covariant only  under the korentz  subgroup. The de Sitter group 
plays only a formal role, facilitating the discussion o f  the algebra of  the mat- 
rices that take the place of Dirac matrices in higher-spin theories, and aiding 
in  the evaluation o f  their  matrix elements. The de Sitter group plays a similar 
role in the work o f  de Vos and Hilgevoord (1967), in which a five-dimensional 
formalism was used to simplify the discussion o f  subsidiary conditions.  

A different approach (Bakri, 1967, 1969, 1970; Bakri et al., 1970), in 
which the rest mass is regarded as a fifth component  of  momentum,  leads to 
manifestly S0(4, 1 )-covariant formulations of  spin-s theories. 

The wave functions of  the Bargmann-Wigner equations (Bargmann and 
Wigner, 1946) belong to completely symmetric  irreducible representations 
o f  the group S0(4, 2), not just S0(4, I) .  The present work investigates the 
manifestly S0(4, 2)-covariant equations obtained by introducing an additional 
parameter  so that  the momentum vector acquires six components.  The spin- 
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1/2 and spin-1 equations belonging to this scheme have been mentioned 
previously (Lord, 1972). We shall employ the algebraic methods of this work 
(referred to in the following as I), discussing the spin-I/2 and spin-1 theories 
in more detail and extending the discussion to spin-s. 

The fact that the completely symmetric spinors of Bargmann-Wigner theory 
belong to irreducible representations of  SO(4, 2) has been used in the work of 
Salam et al. (1965). The group SU(2, 2) of this work is the "universal cover- 
ing group" or "spin-group" of S0(4, 2). These authors obtained generalized 
Bargmann-Wigner equations in which the spin was not unique, by allowing 
irreducible representations other than the completely symmetric ones [cf, the 
spin-(1 + 0) o f / ] .  However, as in the Bhabha equations, the equations them- 
selves were covafiant only under the Lorentz subgroup of the larger group 
used for classification of the wave functions. 

2. The Dirae Equation 

The 15 traceless base elements of the Dirac algebra are generators of a 
representation of the Lie algebra of SO(4, 2) (ten Kate, 1968). The a-algebra 
described in I (see also Lord, 1975)provides a method of formulating S0(4, 2)- 
covariant statements, analogous to the use of quaternion algebra in discussing 
SO(3). The six matrices 

o A = (Tu, 7 s, 1) (A = 1 . . . .  ,6)  (2.1) 

satisfy 

o(A o.B) = ~(AoB) = ,QAB (2.2) 

where ~AB is the diagonal matrix (111 - 1 - 11)(used as a raising and lowering 
operator for sixfold indices), and 

6A = (_7u  _75, 1) (2.3) 

The generators of the two spinor representations S and S of S0(4, 2) are 
½a AB and ½6AS, where 

a AB = o[Ao B], G AB= o[Ao B] (2.4) 

The matrices S and S belong to SU(2, 2). If the spinor ~ transforms to S¢ 
under the six-dimentionat "rotations," then the equation 

(6Apa)t~ = 0 (2.5) 

is covariant. We wish to interpret Pu as a four-momentum. Therefore, in order 
to preserve its reality under S0(4, 2) transformations, we require the para- 
maters Ps and P6 to be real. In terms of the Dirac algebra, (2.5) is 

( 7 %  + 7SPs +P6)~ = 0 (2.6) 

This implies a Klein-Gordon equation with m 2 = p 2  _ ps 2 [i.e. ~ApA)~ = 0], 
So it is just as acceptable as the Dirac equation as a theory of massive spin-1/2 
particles. The sign of (,062 - ps 2) is not invariant under S0(4, 2), so the theories 
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of massive and massless spin-I/2, as well as a "tachyon" theory in which the 
four-momentum is spacelike, are contained in the single equation (2.5). In 
particular, we can obtain (2.5) in three special forms, connected by S0(4, 2) 
rotations: 

P6 = K, PS = 0:  ( " /"p#  - K ) ~  = 0 ( 2 . 7 )  

P6 = 0, PS = •: (0~#P# -- iK)~ = 0 (2.8) 

P6 = -+LOS = K: [T#p# + K(1 -+ 75) ]  ¢ = 0 (2.9) 

The first form is the conventional Dirac equation, which can be obtained from 
(2.6) by a rotation through angle tan -1 (Ps/P4) in the (45)-plane. The second 
form corresponds to spacelike four-momentum - it is expressed in terms of a 
different representation of the Dirac matrices: 

a u = -- i7s7 # = UTuU -1 (U = e -iv5/2) (2.10) 

The third form corresponds to zero rest mass. It is identical to Tokuoka's 
neutrino equation (Tokuoka, 1967). 

The generators o AB are explicitly 

o#v = v q  

aus = 7s7# (2.11) 

0 #  6 = 7# 

OS6 = ,,/5 

The 16 Dirac bilinears consist of  a scalar ~ and a skew tensor ~oAB¢ of 
S0 (4 ,  2) (the skew tensor belonging of course to the adjoint representation), 
where 

= i~7 s = i~?~3y s (2.12) 

It is rather surprising that the pseudoscalar is the invariant for SO(4, 2), 
rather than the scalar ~ .  This is, however, an essential feature of the formalism. 
Some clarification is required here, since the relation between the notation o f /  
and that of the present work is somewhat confusing. In I, the representation of 
the Dirac algebra that we employed was the a # of (2.10). The "Dirac equation" 
of that paper was actually the tachyon equation (2.8), but since the factor i 
was inadvertently omitted, this fact was overlooked. The quantity f is actually 
the adjoint of  ~ associated with the Dirac matrices a #, and the matrix/~ and 
charge conjugation matrix C o f / w e r e  also those appropriate to the Dirac 
matrices ~u. The relation between the notation of the present paper and that 
o f / i s  explicitly given by (2.t 0), together with a s = 7 s,/3/= &s/3, ~r  = ~, CI = 
/~s C. 

Multiplying (2.5) by C! gives it the form 

pAoAa•¢ • = 0 (2.13) 

where aA ~ is skew-symmetric in its spinor indices. 
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3. Some Explicit SU(2, 2) Matrices 

A parity transformation can be regarded as an inversion in (1236)-space, 
and time-reversal as an inversion in the (45)-plane. The corresponding spinor 
matrices are 

e = e ~r'~'512 e ~r° 36/2 = ( - 7 1 7 2 ) 7 3  = i75fl (3.1) 

and 

T = e~a'~/2 = 7st3 (3.2) 

They are both unitary. These parity and time-reversal operations are different 
from the usual ones. In particular, T operates linearly on the wave function, 
not "antilinearly," and under both P and T, the Dirac bilinear ffff changes sign, 
while t}3,s~ remains invariant, the opposite of  the usuai behavior. Moreover, if 
we take the spinor equation in the form (2.7), the "parity" operation involves 
a change on the sign of the mass, m -+-m:  The physical significance of these 
operations P and T is at present obscure. 

A pure Lorentz transformation is a hyperbolic rotation in the (p4)-plane 
(where p denotes the axis along the three-momentum p). The transformation 
to the rest frame is the one that takes p = t p I to zero. However, the group 
S0(4, 2) contains another transformation that will take p to zero, namely, a 
rotation through angle 

O1 = tan-1 (P/P6) (3.3) 

in the (p6)-plane. The spinor matrix of this transformation is 

e x p  (½01PiaiS/p) = exp (½01~ -Y) (3.4) 

If the equation is initially in the form of the Dirac equation (2.7), this is just 
the Foldy-Wouthuysen transformation (Foldy and Wouthuysen, 19 50): 

m + p 4 + y "  p 
[2p4(p 4 + m)] 1/2 (3.5) 

Alternatively, a rotation through angle 

02 = tan-l(p6/p) = 7r/2 - 01 (3.6) 

in the (p6)-plane will take P6 to zero. With the equation initially in the form 
(2.7), we obtain the Cini-Touschek transformation (Cini and Touschek, 1958). 

The most simple special form for (2.5) that can be obtained by an S0(4, 2) 
rotation, corresponds to PA = (000011). The equation is then simply 

= 3'sff (3.7) 

In the Dirac representation, the solution is 
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where X is an arbitrary two-component spinor. We obtain the positive-energy 
solutions of the Dirac equation by a rotation of 90 ° in the (45)-plane [PA -+ 

17/. 5 4 ,.,, X (000101), ~ ~ exp ( -~  3' 3' )~  (o)], followed by an inverse Foldy-Wouthuy- 
sen transformation. The negative-energy solutions are obtained by a rotation 
through 90 ° in the opposite direction [PA ~ (000-101), if-* exp (~rr~'s74) ~ "~ 
(o)] followed by the inverse Foldy-Wouthuysen transformation. Solutions of 
the Tokuoka equation (2.9) are obtained from (3.7) by combining a rotation 
in the (p6)-plane with a rotation through the same angle in the (45)-plane. 

4. Spin-1 

The generalization of (2 . I3) to  spin-1 is 

pAoA~3B ~ = 0 (4.1) 

where B3v is symmetric in its spinor indices (therefore ten components). The 
number of equations contained in (4.1) is 15 (not 16, because the equation 
obtained by contraction on a3, is an identity arising from the skew-symmetry 
of OA~¢). The usual Bargmann-Wigner equations for spin-1 are, of course, (4. t)  
with Ps = 0, P6 = t~. 

The equations (4.1) can be written in various alternative forms. The 10 x 10 
matrices G AB that generate the representation B of S0(4, 2) are of course 
given by 

( G~B)a3 = o~(aB3)~ (4.2) 

Therefore, if we multiply (4.1)by Ossa and symmetrize on 67 we get (on 
account of @OA = OAB + r ~ )  

(GBap A + pB)B = 0 (4.3) 

The equations (4.3)are actually equivalent to (4.1): Multiply (4.3) by o B. 
We obtain 

0 = pAoBe3aL(~Bv) ~ +pBo~B~V (4.4) 

On account of the identities 

and 

equation (4.4) is 

o ~ A d  = oB~po~ 8 - ~A8~2 

OB~OBV ~ = 4~f~ 31 

pAq6A[a~fl] (flB~/)~ = 0 

When the symmetrization and skew-symmetrization brackets are expanded, 
this is seen to be equation (4.1). The equations (4.3) are, therefore, completely 
equivalent to the generalized Bargmann-Wigner equations (4.1). 

As shown in/,  the ten-dimensional representation B of SO(4, 2) is a skew- 
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symmetric anti.self-dual tensor of rank 3, In this formulation, the compo- 
nents of B are written with a skew-symmetric triplet of sixfold indices 

BABe (4.5) 

and we have 

BAnG = --(i/ 6)eASCl)~,B DEF (4.6) 

The Bargmann-Wigner equations (4.1)are then 

pAB x s ¢  = 0 (4.7) 

Because of the anti-self-dual property (4.6), equations (4.7) can be written in 
the alternative (but equivalent) form 

P[ABBcD] = 0 (4.8) 

The equations (4.7) can be written in a five-dimensional notation by sin- 
Ning out one of the momentum components. Without loss o f  generality, we 
single out P6, and let the indices a, b, c , . . .  run from 1 t o  5. Define 

Bab = Nab 6 (4.9) 

The wave function is now simply a rank-2 skew-symmetric tensor for the 
"little group" S0(3,2) (if we had singled o~t Ps, the "little group" would have 
been S0(4,  t) ,  and if we had singled out Ps + P6, it would have been a group 
isomorphic to  the Poincard group). The equations (4.6) and (4.7) are now 

i i 
Babc= eabcde Bale, Bah = eabccle Bcae (4.10) 

p6 Bah + pc Bcab = O, pa Bah = 0 (4.11) 

We shall refer to the equation (4.7) for particular values of B and C as "the 
(BC)-equation." Then the first set of equations (4.11) consists of the equations 
(ab) and the second set consists of the equations (b6). Clearly, i f p  6 is not 
zero, the five equations (b6) are a consequence o f  the ten equations (ab ). This 
removes the redundancy from the Bargmann-Wigner equations (4.1). The ten 
equations (ab) are explicitly 

PB = 0 (4.12) 

where B is the ten-component vector (B 23, B 31, B 12, B 14, B 24, a 34, B is, B 2s, 
B as, B 45 ) = (B 236, B 316, B 126, B t46, B 246, B 346 B 156, B 256, B 356, B 456 ) = i(B145, 

B24s, g34s, B23s, B315, B12s, B325, B324, B134, B214, B321) and P is the fnatrix 
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P6 " iP5 -iP4 

P6 iPs 

P6 (Ps 

--iP5 P6 

--iPs P6 iP3 

--iPs P6 --iP2 ipl 

ip4 ipa -ip2 p~ 

(P4 -ip3 ipl P6 

ip4 ip2 - ipl  P6 

- ip  1 - ip  2 --ip 3 P6 

-iv1 

-ip4 -ip= 

-ip4 -ipa 

-ipa iv= 

- ip  1 
(4.13) 

Returning now to the formulation (4.3), define 

fla = Ga6 

so that ) (4.14) 

[fl,~, ,~b] = G,,~, 

The matrices ~a are then the ten.dimensional representation of the Kemmer 
algebra K s (Lord, 1973), 

~a~bfle + ~c[jbfja= ~ab~c + ~Tcb~a (4.15) 

The sixth component of the set of equations (4.3) is then 

(--flap a + p6)B = 0 (4.16) 

which is dearly the same as equation (4.12). [The coefficient matrices of the 
Pa in (4.13)are thefive Kemmer matrices.] Hence one of the six components 
of the set of equations (4.3) implies the remaining five. Note that the choice 
of p6 as the component singled out for special attention has no particular sig- 
nificance; in particular, the indices 123456 on BA BC and PA can be permuted 
so that any of the six components of PA can appear on the diagonal in (4.13). 
Singling out P4, the relevant component of (4.3) is P4 = GA4P A ; setting Ps = 0, 
P6 = m we obtain the Hamiltonian form of the Kemmer equation, 

p4 = [~,~1 . p + ~ %  
The derivation of the Klein-Gordon equation (pApAB = 0)from (4.3)is 

immediate. In particular, the equations (4.16) with Ps = -+P6 describe zero 
rest-mass spin-1 (i.e., they are equivalent to the Maxwell equations). A similar 
formulation of Maxwetl's equations, obtained from tile Kemmer equation by 
replacing the mass by a singular operator, was given by Hafish-Chandra (1947). 
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The actual Harish-Chandra equations can be obtained from (4.12) by setting 
Ps = 0, rewriting in terms of the ten-component wave function (B~;BUS/p6) 
instead of (BU~ BUS), and then taking the limit as P6 goes to zero. Such a 
procedure, however, is contrary to the spirit of  the S0(4, 2) formulation. 
Our singular operator is 1 -+ fis; Harish-Chandra's is ris e. 

The action of the Foldy-Wouthuysen and Cini-Touschek transformations 
on the ten-component wave function are seen immediately, from the previous 
discussion, to be given by the matrices 

exp (~0~-t3) = 1 +(~ .l])sin ½0 +(~-[3)2(1 - cos~0) (4.17) 

with the appropriate value of 0. 

5. Spin-~ 

The generalized Bargmann-Wigner equations for spin--~ are 

PA~B~v~ = 0 (5.1) 

where B~8 is a completely symmetric spinor. The first index pair can be con- 
verted to an anti-self-dual triplet of sixfold indices, as in Section 4, so we have 
a spin-tensor BAsc~ satisfying 

pA BABe = 0 (5.2) 

(oApA)BCDE = 0 (5.3) 

These equations must be supplemented by a subsidiary condition correspond- 
ing to symmetry of 

B3~,a = 1~ ~o~ CBABc~ (5.4) 

on 3'6. Since ¢@a are a complete set of  skew-symmetric matrices, this symmetry 
property is ensured by requiring the vanishing of (5.4) when multiplied by 
a~ ~. The required supplementary condition is therefore 

oABC~DBABc = 0 (5.5) 

This is readily simplified by using the rules given in I for evaluating products 
such as aABC~ D. We find that (5.5) is simply 

qAB BABe = 0 

An alternative form for the subsidiary condition is 

OA BA Bc = 0 

(5.6) 

(5.7) 

The equivalence of (5.6) and (5.7) is rather surprising. We show directly that 
(5.7) is equivalent to the symmetry ofBt~, a on flS. Using the methods of / ,  
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Since aBc is a complete set of traceless 4 x 4 matrices, the vanishing of this 
quantity is equivalent to the vanishing of ea~'r°B3,6p, which is equivalent to 

=Bo  
Obviously, when B~3 ~ is completely symmetric, the two equations (5.2) 

and (5.3) are equivalent to each other. The spin-~ theory is therefore completely 
specified by the set of  equations 

pA BABC = O, 6A BABC = 0 (5 .8 )  

6. Spin-2 

For spin-2, we have a completely symmetric rank-4 spinor. The two pairs 
of spinor indices can be converted to anti-self-dual triplets of tensor indices, 
so we have a wave function 

BABC, DL~" (6.1) 

symmetric under interchange of the triplets. Alternatively we could leave one 
of the spinor index pairs unconverted; in terms of the resulting mixed quantity, 
the remaining symmetries of the rank-4 spinor can be seen to be equivalent to 

~A°e31~ ABC - ! ~°e3~DEF~ABC 
033, - 12 'JA '-'33, "-'DEF = 0 

From the expression given in I for the product OA aDEF, th i s  is easily seen to be 

B ~  c = 0 (6.2) 

Hence the Bargmann-Wigner spin-2 equations are equivalent to 
ABC PAB~EF = 0 (6.3) 

together with the supplementary condition (6.2). 

7. Higher Spin 

For integral spin s, the wave function has s anti-self-dual triplets. It is 
symmetric under interchange of triplets, and the contraction (6.2) on any 
pair of  triplets vanishes. It satisfies equation (6.3). For half-integral spin we 
have exactly the same properties on (s - ½) triplets, but there is an additional 
spinor index, and an additional subsidiary condition (5.7) associated with it. 
However, note that for half-integral spin greater than ~ condition (6.2) is a 
consequence of the condition (5.7); for example, for spin-5/2 we have, from 
(5.7), 

oA (oDBABC, DEF ) + oD(oABABc, DEF) = 2~A DBABC, DEF = 0 

which is just (6.2). Hence the complete sets of Bargmann-Wigner equations 
are 

ABC ABC PAB... = O, BAEF... = 0 for integral spin 

(7.1) 
(~ApA)BBCD = O, ~A BABC = 0 for half-integral spin 
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AS for spin-l ,  the generators of S0(4 ,  2) for a completely symmetric spinor 
are given by 

(GABB)aa,y... = ½S@4B(~B~...)6 

so that ,  by multiplying 

p A o ~ % ~ , . . .  (7,2) 

by aB~c~ and symmetrizing on the remaining indices we get 

(GBAP A + spB)B = 0 (7.3) 

[However, it is not  in general true that  (7.3) implies the full set (7.2); that is a 
peculiarity of  spin-{ and spin-1 .] Equation (4.14) now serves to define the 
Bhabha matrices, and the Foldy-Wouthuysen  and Cini-Touschek transforma- 

tions have the form 

exp ({0 ~ "[3) (7.4) 

The solutions for massive or massless spin-s can be obtained by  S0(4 ,  2) 
rotat ions from the solution in the special gauge with PA = (000011),  as for 
spin@ In this special gauge we have BSB c = B6B c, so Bus 6 = 0 and therefore 
Buvp = 0. Each triplet is therefore a self-dual skew-symmetric pair o f f o u r f o M  
indices: Buy = Buy 6 satisfying 

B "v = {ie"UPaBpo (7.5) 

The subsidiary conditions for integral spin are 

u, = 0 (7.6) B gp,. .. 

and those for half-integral spin are 

7~Buv . . . .  = O, Buy . . . .  = 7SB~v . . . .  (7.7) 
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