A theorem on stress-energy tensors
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The equality of the symmetrized Noether stress—energy tensor (Belinfante’s tensor) and the canonical
stress—energy tensor (functional derivative of the Lagrangian density with respect to the metric) is
established by methods based on the formalism of tetrads and Ricci rotation coefficients. The result holds
for any Lagrangian which contains no derivatives of the fields higher than first order.

The equality of Belinfante’s symmetrized stress—
energy (SE) tensor and the canonical SE tensor
(functional derivative of the Lagrangian density with
respect to the metric) was demonstrated for integral
spin fields by Rosenfeld.' For fields with half-integral
spin it is not immediately clear how the canonical SE
tensor should be defined. Goedecke? has shown that,
subject to a certain prescription for carrying out the
variation of the metric, Rosenfeld’s equality holds for
the Dirac field and for the coupled Maxwell and Dirac
fields. Goedecke conjectured that a general proof of the
equality for any field should be possible. The proof
presented here is based on the tetrad formalism,®% in
which the Noether SE tensor and the Noether spin tensor
are defined as functional derivatives of the Lagrangian
density with respect to the tetrad components and the
Ricci rotation coefficients.

Let L(¢, 2,¢) be the Lagrangian of a set of fields ¢
in a Cartesian coordinate system in Minkowski space-
time. We generalize it to a Lagrangian density  in a
curvilinear coordinate system in the following way.?
Introduce a tetrad ky and convert all the coordinate
based indices {u,», - --) on ¢ to tetrad based indices
(@, 8, +++), by contractions with 4% or its inverse h”,
Introduce a set of Ricci rotation coefficients A*%, for
the purpose of constructing a derivative of ¢ that is
covariant for coordinate transformations and spacetime
dependent Lorentz rotations of the tetrad. Then

9{¢rau¢'1 h:; ‘\aﬂu]:hL((ﬁ! ¢a) (1)
is the required generalization, invariant under tetrad
rotations and a scalar density of weight 1 under coordi-
nate transformations. We have used the notation

h=|h|=(-g)/? (2)
and

o :h:{auqb +%)’O‘chu5¢)' (3)

The quantity in brackets in (3) is the covariant derivative
¢, and the G, are the constant matrices which generate
the Lorentz rotations in the ¢-representation.

Two tensor densities /% and s“,; are defined as the
functional derivatives of € with respect to A% and 1*%,.
That is, for the infinitesimal variations

BhSi=t7, Oa20 =pee (4)
we have

BR~INLE +58%, L%,
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(where ~ denotes that all divergences have been omitted
from an equation).

Suppose the original tetrad was hj = 6% before the
variation (and hence g,,=17,,, i.e., the coordinate sys-
tem was Cartesian), and suppose also the Ricci rotation
coefficients were zero. Then, when we work only to
first order in the infinitesimal quantities, the distinction
between tetrad based indices and coordinate based
indices is not relevant. All vector indices are raised
and lowered with the Minkowski metric.

Substitute for the variations in (5) those brought about
by an infinitesimal coordinate transformation
xh— xH o+ EH

L==-23,¢%, t*°,=0 (6)

(to first order). Integrate (5) over a region of four-
space on the boundary of which £* vanishes and apply
Gauss’s theorem. We obtain the identity

aues = (7)

in the Cartesian system. Similarly, substitute the
variations brought about by an infinitesimal tetrad rota-
tion with parameters A, ;== Ag4,:

Las=Xasy £, =2,8%, (8)
and we obtain the identity
8,55 +2t145 =0. (9)

The rotation coefficients and the tetrad have been
treated here as independent fields in the variation.
However, since we have chosen the rotation coefficients
to be zero in the initial reference system and since we
know how they transform,® we can easily show that
they can be constructed from the tetrad. The infinitesi-
mal form is

caﬂu:augmﬁl+aa§18p}_aﬂgtﬂul' (10)
Substituting this in (5) gives
5 Q_,Umﬁ} +aas(asip)€mm_ (tlu.ﬁ] +%apsoaﬁ)§mﬁ o (11)

The second term vanishes on account of (9) and the first
term can be reexpressed, using (9), as

Sl e (12)
where the symmetric tensor 6% is
6%5=18+3 (35008 — slo8w), (13)

For integval spin fields, an alternative (and more
usual) way of generalizing L(¢, 3,¢) to curvilinear
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coordinates is by means of the metric and the

Christoffel symbols, without the introduction of a tetrad:

9(¢" a#¢’ guva aoguv)‘ (14)

Because (1) and (14) are equal in the initial (Cartesian)
system, they are equal in any system, because they
have the same transformation properties for coordinate
changes and tetrad changes. The canonical SE tensor
density is defined by arbitrary variation of the metric

5, =E,00

e~4TE,, (15)
M
so that
Ry R
T,,=2 aa(m"r»)— 2 | (16)

For half-integer spin this tensor is undefined, because
a spinor index is essenfially related to tetrad rotations,
not to coordinate transformations. The Lagrangian
density of a half-integer spin field necessarily contains
the tetrad components. However, if we are interested
only in the reference systems that differ infinitesimally
from Cartesian ones, the canonical SE tensor (16) can
be defined for half-integer spin provided we destroy the
independence of infinitesimal tetrad rotation and infini-
tesimal coordinate transformations. The simplest way
of doing this is to impose the restriction

tlamzo (17)

on the tetrad variations. This condition is implicit in
Goedecke’s treatment of the Dirac field, though he does
not explicitly introduce the tetrad concept.

Now, because of the orthonormality of the tetrad

NashChE=g,, (18)
we have

E.uu:':zgtuun (19)
and (15) is
38 J. Math. Phys., Vol. 17, No. 1, January 1976

BR~T™E, ... (20)

Comparison of (12) and (20) gives immediately, in the
Cartesian system (by an integration and application of
Gauss’s theorem),

Too=00y (21)

[Incidentally, the identity 3, T“" =0 follows from substi-
tuting in (15) the variation £,,=-2,£,~4,£,, integrat-
ing, and applying Gauss’s theorem. |

Thus the equality of the Belinfante SE tensor and the
canonical SE tensor is established if it can be shown
that ¢,, is actually the Noether SE tensor, i.e., we
have to show that

(=B8R 10,0, S* 5= TCegd, 22)
where
ﬂu:aﬂ/‘aaucp. (23)

These follow from the form (1) of €. Note that, in (1),
L(¢, ¢,) is constructed only from ¢, ¢, and the
Minkowski metric; the tetrad components do not occur
explicitly, but only in the structure of ¢,. For variation
of the tetrad and rotation coefficients,

6% =0hL +hOL =08hL +h(3L/3¢ )00,
=4 -8R/ =i, +3L%,Ghad)
=(04 = T D)LY +5(14 Gy,
Comparing this expression with (5) identifies the tensors

¢ and s* 5 which coincide with (22) in the Cartesian
system.
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