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Abstract. A new gencralisation of Einstein's theory is proposed which is invariant
under conformal mappings. Two scalar fields are introduced in addition to the
metric tensor field, so that two special choices of gauge are available for physical
interpretation, the © Einstein gauge’ and the ‘atomic gauge’. The theory is not
unique but contains two adjustable parameters { and a. With a= 1 the theory

viewed frem the atomic gauge is Brans-Dicke theory (w = — 3/2 -+ {/4). Any
other choice of a leads to a creation-ficld theory. In particular the theory given
by the choice a-= — 3 possesses a cosmological solution salisfying Dirac’s ¢ Jarge

numbers * hypothesis.

1. Introduction

It we set & = ¢ =1, every physical quantity @ has units which are a power N
of a length. A conformal mapping is a spacetime-dependent change in the unit
of length,
ur — A? Sur
0 -\ Q (1.D
The carliest ‘attempt to make use of this kind of transformation in physics was
made by Weyl (1919). In order to construct a conformally-invariant (co-invariant)

Lagrangian density a dimensionless vector field ¢, with the anomalous transfor-
mation law

bu by + 0, In A (l.2)
is introduced. Weyl's Lagrangian density is
(— V2 (P? — & ) (1.3)

where

{) :—‘—“R - 6(¢/~‘{’J{)# —(}I)I;'M). ‘/’/J,V = (;BM.V —(/)V-M
(we denote partial differentiation by a dot and covariant differentiation constructed
from Christoftel symbols by |). A generalised conformally covariant (co-covariant)
derivative of any tensor field Q can be constructed by adding extra terms to the
derivative. ?o-covanant d.lﬂerenti.atlol} 1s denoted byAQ; u- The transformation law
is Q.. - - AN Q. [for specific details of the construction, see Lord (1972) or Dirac
(1973 b)|. Conformal invariance requires the square of the curvature scalar to
occur in Weyl's Lagrangian, so the field equations for the metric are fourth order
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in Weyl’s theory. The theory given by (1.3) was believed by Weyl to be a theory
of gravitation and electromagnetism in frec space. I{ matter is present the
conformal invariance is nccessarily broken because the matter Lagrangian will
contain particle masses and coupling constants and of course the constancy of these
quantities Is not compatible with conformal invariance,

Dirac’s conformally covariant theory (Dirac 1973 b) contains Weyl's vector and
also a scalar field o with conformal transformation law

og>\"1g (l ‘4)

Conformal invariance in the presence of matter is secured by replacing particle
masses and the Newtonian gravitational constant by multiples of ¢ and o2 res-
pectively. A conformally invariant Lagrangian density for ¢ is now required.
Dirac’s conformally invariant Lagrangian density (in the most general form of
the theory) in the absence of matter is

(= V2 (0* R — | pup? — ko, o) (1.5)
where
Oip = O T Puo

To the action associated with this Lagrangian density, a co-invariant action for
maltter is added.

Pictenpol, Incoul and Speiser (1974) have observed that the conformal invariance
of Dirac’s theory is only a formal mathematical property, devoid of physical
significance. The argument put forward by these authors employed the specific
form of Dirac’s action functional, but in fact it applies to any conformally in-
variant theory which employs a single scalar field for the purpose of replacing
coupling constants and particle masses to achieve conformal covariance. To
see this we may simply note that by a conformal mapping we can set o = 1, so that
so far as physical interpretations are concerned such a theory is fully equivalent
to one which lacks conformal covariance and in which coupling constants and
masses are trueTconstants. Any other choice of gauge is a mathematical abstrac-
tion, devoid of physical relevance.

2. Two-scalar theories

The conclusion to be drawn from the result of Pietenpol ez a/ (1974) is that con-
formal invariance can be achieved in a physically non-trivial way only if we
have (at least) nwo scalar fields to take the place of coupling constants and masses.

Tn a theory containing a scalar field o, it is not strictly necessary to introduce
a Weyl vector as an additional field for forming co-covariant derivatives. A Weyl
vector can be constructed from o by the prescription

by = —0loly =— 2, (Ino) ' 2.1

Weyl and Dirac introduced a true vector (rather than the derivative of a scalar)
because they wished to interpret it as the electromagnetic four-potential. How-
ever, we have shown elsewhere (Lord 1972) that, for the co-covariant derivative

of a four-component spinor, y#,, = y*J,,, so that Weyl's vector would not in
fact couple to an electron. An independent Weyl vector dlﬁ"erent from (2.1) is
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required only if we wish to be able to constructa non‘-vanishing cojcovariant d.eri—
vative of o. In the two-scalar theory this is not required so it will be suﬁm?nt
to construct the Weyl vector according to (2.1). The co-covariant derivative
of any quantity Q- is then simply

Q. =0("0) 2.2)

where the comma denotes a covariant derivative constructed from the Christoffel
symbols associated with the dimensionless metric

gpw =°'2gp.u (2.3)

If we make use of the dimensionless metric g,,, the obvious conformally
invariant generalisation of Einstein’s Lagrangian density 18

(— 8V R =(—g)*(e* R+ 60 U0) 2.4)
where

Oo =(—g)"* [(—&)*g* ouls

(g is the determinant of the dimensionless metric and R is the curvature scalar
constructed from this *metric ). The expression (2.4) differs only by a diver-
gence from

(— g)?*(e* R — 60 4o #). . (2.5)

A co-covariant Lagrangian density for a set of ‘ matter’ fields Q can be
obtained by replacing derivatives by the generalised derivatives (2.2) and by
replacing masses by multiples of a scalar field, coupling constants by appropriate
powers of a scalar field. If we use ¢ for constructing masses and coupling con-
stants, the criticism of Pietenpol er a/ will apply. We must, therefore, introduce
an additional scalar field « for this purpose [A ‘ mass field > of this kind was first
introduced by Hoyle and Narlikar (1971)]. Finally, we must construct a confor-
mally invariant Lagrangian density for the mass field. An obvious choice is

E(— B2 GH i, i3 2.6)

where

K, p =0 (k/o)., 2.7

and ¢ is a dimensionless parameter. The full proposed Lagrangian density is now

(— V2 (R + {8 «,u, ,[k?) + £ 2.8)

where the matter Lagrangian .£ contains o and «.

Of course, we are not led uniquely to this form by the requirement of conformal
invariance. We have been guided also by considerations of simplicity. The
theory has two special gauges. In the gauge in which o =1, the gravitational
"constant’ is a true constant. Since o2 = 1/16 =G, we shall call this the Einstein
gauge. In the gauge in which « = |, particle masses and coupling constants

other than G are true constants; this may be called the atomic gauge. In the two
gauges, the Lagrangian density becomes
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(— &2 (R + Ly t/x®) + £ (2.9)
and _

(= E[0* R+ (=64 o ok +.£ (2.10)
respectively.

Note that with the particular choice (2.6) we get the simplest possible Lagrangian
in the atomic gauge [for instance the choice (— g)M ¥k, ¢ * would have given
rise to the peculiar form (— g)V2(— 6 - [o~?) o,0F in the atomic gauge]. We
have chosen the Weyl vector (2.1) rather than — Oy (In «) because otherwise we
could not have constructed a co-covariant derivative of x. In a previous approach
to two-scalar theory (Lord 1974) a different, less transparent, notation was used,
but the Lagrangian density suggested there was in fact equivalent to (2.8) but
with a different scheme for making .€ conformally covariant [the reader should
note that the inadvertant omission of o in equation (2.7) of this reference led to
spurious factors ¢’ in (5.8) and subsequent equations. Section 6 of that paper
15 consequently wrong]. Other variations also exist. We could use « as a mass
field but construct coupling constants from ¢ or even of (x/o) where f is an arbitrary
function. The point is that the requirement of conformal invariance is quite
inadequate for determining the precise way in which o and « should appear in a
matter Lagrangian. In the following section we avoid these difficulties by
considering only the case when the matter can be treated as a pressureless fluid,
and supplementing the equations by a simple hypothesis about the sources of
o and «.

A remarkable feature of co-covariant theories is that mass terms are replaced
by interaction terms representing a coupling between Q and «, with dimensionless
coupling constant. All other coupling constants are also dimensionless. Thus,
a quantisation of such a theory would require no mass and coupling constant
renormalisations.

3. Pressureless fluid

If we carry out variations of g4, o, x and Q in a co-invariant matter Lagrangian
density .£, we obtain

5.6~ 1 TH Bg,, + Bdo + Kk + F . 50 (3.1)

where ~ denotes that a divergence has been discarded. <F vanishes because
F =0 is just the set of field equations for Q. The quantities I#*, @ and K
are the ‘sources’ of g,,, o and «. By taking the variations to be those brought
about by an infinitesimal coordinate transformation, integrating (3.1) over a
region of spacetime on the boundary of which the variations vanish, and applying
Gauss’ theorem, we obtain

CJZ“; = K.,Ll,g< + U.#'z (3.2)

By taking the variations to be those brought about by an infinitesimal conformal
mapping, we get

T = kK + o 3.3)



168 Eric A Lord

For a pressureless fluid,
L= — (__ g)lg‘zp, T = (— g)—l/‘.’. ) /Jll/'l“ w, (3?4)

but we have no prescription for determining K -= (— g) "2 K all(.i'S = (— g)V* @
The theory is complete only when supplemented by an additional ‘hypothcms
about the form of these sources. We make the reasonable hypothesm that the
source of K. is proportional to the density p

K = ap/h' (3 * 5

Here, « is a dimensionless parameter and we have included a factor 1/« to_make
(3.5) dimensionally constant. Then (3.3) leads immediately to

S=(1 —ua)p/o (3.6)

Let the mass of an individual particle of the fluid be denoted by m and the
number density by v. Then

p = MV = KUV (3.7)
where o is a dimensionless number. Define the dimensionless variable
f=1n(x*c""%) - (3.8)

Then (3.2) is just

T _ o (3.9)

Substitute T4 = put u¥ and after some simple manipulations, making use of (3.7),
eq. (3.9) is seen to imply

("), = p dffds - (3.10)
d

(vu”),,, :VaE(f""ln K) (3.11)

gy = Qu fH (3.12)

d/ds =u* ), is differentiation along the world lines of the fluid, and
Qp = Bp — uy 1t (3.13)

is the projection operator for projection orthogonal to the world lines. Equation
(3.11) implies that, in general, particle mumber is not conserved. We have a theory
in which the world lines have end-points, as in Hoyle-Narlikar theory.

We have a special case if f=1In«, ie., if a« = 1. With this choice of para-
meter we obtain a theory in which particle number is conserved. We have
S == 0 and the resulting theory, in the atomic gauge, is simply Brans-Dicke theory
{(2.11) with 8.0/8¢ = 0] with w = — 3/2 + (/4. (The Brans-Dicke field is
¢ =o*—note that our R is the negative of the R of Brans and Dicke). In the
Einstein gauge the energy-momentum tensor is not conserved, but this is not a
theory with true creation since the non-conservation of energy comes from

variation of the rest masses of individual particles rather than from creation of .

new particles: the property of world lines, of having no end-points, is clearly a
conformally invariant property so is necessarily true in any gauge if true in one
gauge. The co-covariance of the continuity equation (vuf*),p =0 13 demonstrated
by noting that it can be written ((— g)"*w*) ..  Then since (— g)¥/2, v and u#
have respectively N =4, —3 and — 1, (— g)2 yvwy* is a co-invariant.

s ——
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Thus, although Brans-Dicke theory is not conformally covariant it can be
regarded as the aspect of a co-covariant theory given by a particular choice of
gauge. This is illuminating in view of the existence of broken symmetrics in
physics. It could be that the underlying physical laws are completely invariant
under a certain group of transformations, the symmetry being apparently broken
only because a particular gauge is singled out by the assumptions implicit in the
process of observations and measurements.

Note that free particles do not in general move on geodesics in our theories,
because of the term on the right-hand side of (3.12). The form of (3.12) shows
that f behaves in a sense like a pressure. There is in fact a third special gauge,

determined by /=0, in which the geodesic hypothesis and the conservation of
energy hold.

4. Cosmological solutions

For convenience, we can work in the Einstein gauge (¢ = 1) and look for solu-

tions of the equations that follow from (2.10) and (3.5), of Robertson-Walker
form

Cds? = dr? — ST(r) die,
AN = (1 -+ kr2/4)= (dr? + r® (6% - sin? 0 dg?) |
£ =k(t). %2

Having found a solution in this gauge, it is a simple matter to go over to the
atomic gauge by carrying out a conformal transformation. The equation for
K 18

4.1)

| VR L
N3 S
21| (5) - —= |~ w @.3)
K K

and, choosing a co-moving coordinate system [u* =(0, 0,0, 1)], the modified
Einstein equations give

g_;-@ 2-;-2§+.§(g) =0 (4.9
L) 56 -4
We shall concern ourselves only with the special linearly expanding solutions,
S~t, k~t"(n#0). (4.6)

Then (4.3) gives
p=(—40nfo)r? 4.7)

Substituting this in (4.5) and eliminating the term involving & from (4.4) and

A 2\ wles
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[Equations (4.8) and (4.7) incidentally imply that { must be negative in order
for a physically relevant solution, of the kind we are seeking, to exist. Substi-
tuting in (4.4) we see that in fact, with & =1 (closed universes), such a solution
will exist only if { < — 2a%].

We now carry out a conformal mapping, to the atomic gauge, on the solution

¢ =1 )
KNZ]‘/G'

4.9
G S (4.9)
proi?

The transformation is
k=1, o=tV de—rleds, p—>171%p
If we change to a new time coordinate
T~ pirlie (for st — 1) 4.10)

the new line interval again has Robertson-Walker form, and we have, in the new
gauge,

k=1
O ~ »T“']/(I'HI)

4.11)

S~7

A particularly interesting solution arises when « = — 3. The Newtonian
gravitational ‘constant’ is G ~o7* s0 we have

G~ 71

S~ 4.12)
p o~

and N, the number of particles in a volume expanding with the matter, satisfies
N ~pS®. Thus we have a cosmology with

Gl N~ | (4.13)

These are precisely the time-dependences required by Dirac’s large numbers
hypothesis (Dirac 19734). Thus Dirac cosmology is a solution of the theory
with ¢ = — 3,
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