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Abstract  

A new approach to Penrose's twistor algebra is given. It is based on the use of a generalised 
quaternion atgebra for the translation of statements in projective five-space into equivalent 
statements in twistor (conformat spinor) space. The formalism leads to S0(4, 2)-covariant 
formulations of the Pauli-Kofink and Fierz relations among Dirac bilinears, and generalisa- 
tions of these relations. 

1. Introduction 

The two-one correspondence between the rotations of  a sphere, and the sub- 
group z -+ (~z + ~)/(--~z + ~-'), [a  [2 + 1t3 i 2 = 1, o f  the group of  conformal 
(circle-preserving) transformations in a plane, through stereographic pro- 
jection, and the taw of  combination o f  these transformations in the plane 
(essentially multiplication in SU(2)), were first clearly established by Cayley 
(1879). They were, however, implicit in much earlier work (that circles on 
the sphere are mapped onto circles in the plane by  stereographic projection 
was known to Ptolemy). The correspondence is discussed and references to 
early work given by  Klein (1884). The appropriate algebra for dealing with 
the group of  rotations of  a sphere is the quaternion algebra o f  Hamilton 
(1844, 1866), which is intimately connected with the above correspondence; 
the defining relations o f  the quaternion algebra are in fact identical with 
those o f  the Lie algebra o f  SU(2). In view o f  these historical facts, it seems 
remarkable that the two-dimensional matrix representation o f  quaternion 
algebra remained unknown until its discovery by Pauli (1927). This work was 
also the first indication o f  the fundamentally important physical significance 
of  the two-component representation o f  the rotation group. Also remarkable 
is the fact that the Lorentz transformations, and Lorentz-covariant equations, 
can be very elegantly expressed in terms of  quaternions (Klein, 1911; Silber- 
stein, 1912, 1913; Kilmister, 1953, 1955; Rastall, 1964; etc.), which were 
first propounded sixty years before the advent of  relativity. 

The correspondence quoted above can be expressed by the statement that 
the affine transformations in three-space that leave the sphere unchanged 
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give rise to a subgroup of the group of conformal mappings in the plane, by 
stereographic projection. If we consider the group of projective transforma- 
tions that leave the sphere unchanged (which is isomorphic to the Lorentz 
group), we obtain by stereographic projection the group SL(2, C) of  Mobius 
transformations 

z -+ (~z + ~)/(3"z + 8), oe8 - fi7 = 1 

which is just the continuous part of the group of conformal mappings in the 
plane. (It is also, of course, the group of projective transformations in one 
complex dimension.) More generally, the N-dimensional conformal group can 
be realised as the group of projective transformations in (iV + 1)-dimensional 
space that leave a hypersphere unchanged, through stereographic projection 
(Klein, 1926; Coxeter, 1936). This correspondence was recognised as having 
possible implications in physics, by Dirac (1936), who was the first to apply it 
to the conform al group in Minkowski space. We shall review briefly the salient 
features of this well-known correspon~lence between Minkowski space M and 
a hyperquadric Q in projective five-space Ps. 

Denote the homogeneous components of a point in projective five-space 
by ~A (.4 = 1 . . . .  6) and let Q be the quadric with matrix r~AS (the diagonal 
matrix (+++--+)),  which we use as a lowering and raising operator for the 
six-fold indices. Then ~A is the polar hyperplane of ~4 with respect to Q, 
and the equation of Q is simply 

~A~ A =0  (1.1) 

The stereographic projection of Q on to M is given by 

~" = ~x ~ 0a = 1 . . . .  4) 

x = ~x  2 ( x  ~ = x . x  u)  
! 

J x = ~s _ ~6 

(1.2) 

The group of projective transformations on Ps that preserve Q is 0(4,  2), 
which, through (1.2) is isomorphic to the group of conformal mappings on 
M. (By a slight modification a correspondence between Q and de Sitter 
space can be established (Coxeter, 1943; Lord, 1974). We make Ps into an 
affine space by specialising ~6 = 0 as the hyperplane at infinity, and then 
into a pseudo-Euclidean space by imposing the metric dxadx a on the inhomo- 
geneous components g a = ~a/~6 (a = 1 . . . .  5). Then (1.2) induces the (3 + 2) 
de Sitter metric on M. With ~5 = 0 as the hyperplane at infinity we get (4 + 1) 
de Sitter space.) 

The exceptional points of Q for which ~ = 0 have no image in M, so Q 
must be regarded as equivalent to Minkowski space completed by the inclusion 
of a space at infinity. In the following, M will denote this completed Minkowski 
space. The figures in M that are preserved by conformal mappings are the 
'Minkowski spheres'. They are hyperquadrics whose asymptotic cones are 
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null cones. Non-null hyperplanes and null cones are regarded as degenerate 
M-spheres and null planes as degenerate null cones. The M-spheres correspond 
to intersection of Q by hyperplanes XA in Ps. We have M-spheres of  one sheet 
or two, or null cones, according as ?~A XA is positive, negative or zero. Null 
cones therefore correspond to hyperplanes tangential to Q, so the space at 
infinity of M has to be regarded as a null cone, because ~ = 0 is clearly the 
equation of a hyperplane tangential to Q (to avert misunderstanding, note 
that the device of regarding the vertex of the null cone at infinity (image of 
the origin o fM under ~6 _+ _ ~6) as three distinct points, according to whether 
it is approached from a space-like, future-pointing time-like, or past-pointing 
time-like direction (Sachs, 1963; Penrose, 1969) is out of place in this con- 
text. From the point of view of the projective geometry ofPs, the null cone 
at infinity is in no way distinguished. It resembles an.y other null cone.) 

The twistor algebra of Penrose (1967) is based on a correspondence 
between lines in Q (which under (2.1) correspond to null lines in 34) and 
points on a quadric B (N in Penrose's terminology) in complex projective 
three-space P3- Denoting the homogeneous coordinates of a point in P3 (a 
'twistor') by ~a (a = 1 . . . .  4), we can distinguish two kinds of quadric; 
Hermitian quadrics have equations of the form 7;t/3~ = 0 (/3 Hermitian) and 
symmetric quadrics have equations of the form ~x~ = 0 (x symmetric). A 
particular Hermitian quadric B, whose matrix/3 has signature (++- - ) ,  is 
singled out. The quantities ~ = ~?/3 are the components of the plane which 
is the polar with respect to B of the point 4. The equation of B is then 
simply 

~ -- 0 (1.3) 

The continuous part of the group of projective transformations in P3 that 
preserves B is clearly SU(2, 2). This is the covering group of SO(4, 2), the 
continuous part of the group of conformal mappings on M. The situation is 
entirely analogous to the relationship between SL(2, C) the Lorentz group, 
and the group of conformal mappings in a plane. The purpose of this work 
is to explore the relationship between Ps and P3 (or between Q and B) by 
methods which are the analogue of quaternion methods. Our aim in doing so 
is to put forward an alternative approach to the geometry of twistors, and 
to use the twistor algebra as a vehicle for exploring the generalised quaternion 
methods. 

The physical significance of the work is at present obscure. The justifica- 
tion for its presentation in a theoretical physics journal rests on the observa- 
tions that the conformal group on Mhas been under active investigation for 
its physical content in recent years (Barut, t 968; Mack & Salam, 1969; Salam 
& Strathdee, 1969) and that the lower dimensional analogue that led to the 
concept of spinors was known to mathematicians at least forty years before 
it played any role in theoretical physics. 

In dealing with quantities in projective geometry we make extensive use 
of PRicker coordinates for lines, and Grassmann coordinates (generalised 
Pliicker coordinates) for planes, three-spaces, etc. (Hodge & Pedoe, 1968). 
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2. Algebra 

The Dirac algebra is the Lie algebra of SO(4, 2) (see for example ten Kate 
(1968)). It can be treated as a generalised quaternion algebra (Lord, 1972a), 
which we shall call the a-algebra. The a-algebra is defined by six 'generalised 
quaternion elements' o A and their conjugates ~A. The defining relations of 
the algebra are 

aA =(aa,1) ,  eA =(--aa,  1) (a= 1 . . . .  5) (2.1) 

a( A -d B) = r~ 4B, -a (A a B) = r/AB (2.2) 

where rr 4B is the matrix of Q. We introduce the skewsymmetrised products 

aAB = OIA -aBI, -dAB = -~[A OB l ] 

aABC =a[A~BC], ~ABC =-~[AOBC]J l (2.3) 

In the four-dimensional representation, the sixteen aAB, 1 are the sixteen 
base elements of the Dirac algebra, as also are the sixteen aA,  aA• c .  There 
exist 4 x 4 matrices/3 (Hermitian and unitary) and C (skewsymmetric and 
orthogonal) with the properties 

/3oA/3 = ( ~ A ) * ,  Co  A C = - ( o A )  T, C/3 = - /3C (2.4) 

(Note, incidently, that this implies that the generalised quaternion conjuga- 
tion is in a sense 'charge conjugation'!) The quantities (1/2)aAB and (1/2)'a A B 
are infinitesimal generators of two inequivalent irreducible spinor representa- 
tions of SO(4, 2) (see Lord (1972b), where the N-dimensional generalisation 
of the o-algebra is discussed). They are traceless. The six a A C are skew- 
symmetric and the ten aABCc are symmetric. We write their components as 

aAo~fl, oABCo, I 3 (2.5) 

and the components of CaA and CaABC will be written 

OA c~3, aABCC~3 (2.6) 

The following 'duality' properties hold 

0 ABC = (i/6)e-ABCDEFoDEF (selfdual) 
(2.7) 

~_ABC = _ (i/6)e_ABCDEF-6DeF (anti-selfdual) 

o "4 a~ = (1/2)e~t3.y~ o A'r~ (2.8) 

Associated with every XA is a skewsymmetric (4 x 4) matrix, with every 
XAS = -- XBA a traceless matrix, and with every completely skewsymmetric 
selfdual (anti-selfdual) XAB c a symmetric matrix x ~t3 (x~) :  
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xa~ = X A o~afl (xa~ = _ x~a), XA = (1/4)Xoe~O~4 t3 

x~ =XABOABOfl (xg = 0), XAB = --(1/8)X~OAB~a 

~ B C  o~¢3 (xO~ = x~a), xABC _ _ (  t /48,1~eo~&.ABC 
x c~ = r -  OAB c - , . . . . .  c~ (2.9) 

(xABC selfd ua 1) 

A BC c~ 
X ~  = XABCac~[~ , (Xc~ 2 = X~c~), XAB c = --(1/48)Xa~aAB C 

(XABC anti-selfdual) 

We list below the additional properties of  the o-algebra that we shall 
require: 

e~ B3`_  oe 3  ̀ c~ "~ 
(1/2)OABe °"4 6 - (8e87 -- 48t~66) } . . . .  2" ~ ABe 46 ~ 8~, 

UIJ )OABCO3`~ =- -  (V o,j (2.10) 

O AOT6 - - - -#0[3 ,06]  

OA o~ OA e~[3 = - 2 e ~ v ~  

~ = ~ a  [~6 t31 (2.11) ff[AOB],),6 z., AB[3` 81 

For any two traceless matrices x and y (with XAt 3 and YAB given by (2.9)), 

ixABCDy = 4 x E ( A y B ) E  + ~ 6 3`~ B 2vAB6~6~81 ) I CD 1 /8X°yy(0A °t~6 ..... (2.12) 
= 4 x E [ A y B I E  ~3 8 Bo~ V - ! / 8 x J v ( o A  68;S) 

Where we have introduced the notation 

X ABCD = (1/2)eABCDEFxEF (2.13) 

The relation (2.12) is proved as follows. From the results o f  Lord (1973a) 
it is a simple matter to obtain an expression for the trace o f  aABOCDOEFOGH . 
Multiply this expression by xCDya% Then do the same for the trace o f  
OABOCDOaH. The two relations (2.12) can then be easily derived. The proof 
o f  (2.11) goes as follows. For any pair of  arbitrary skewsymmetric matrices x 
and y, 

OAB~X~7y 3`a = tr OABXY = -- XCY D tr OAB aCD = 8X[AYBI 

= (1/2) Xccy 3`6 o ~  OB] V6 

3. Correspondences Between Ps and P3 

The one-one correspondence between (complex) points in Ps and null 
polarities (line complexes) in P3 is an immediate consequence o f  (2.9). With 
every point x A of  Ps we can associate a skewsymmetric (4 x 4) matrix xc~p. 
This matrix will be the set of  Pliicker coordinates o f  a line in P3 (i.e. will 
have the form X [ a ~ l )  if and only if 

x[~x3`~ l = 0 (3.1) 
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or, equivalently, defining the dual coordinates ~ by the matrix 

x ~t~ = 1/2e ~ 7 8  xT~ (3.2) 

the condition for the matrix x to represent a line in P3 is 

x ~ x  a~ = 0 (3.3) 

(tr x~ = 0), which is just 

x A XA = 0 (3.4) 

This establishes the one-one correspondence between (complex)  poin t  on Q, 
and lines in (compIex) P 3. 

If the point in Ps is real, (2.4) gives 

= ~x*~ (3.5) 

For a real point on Q this is just the condition for its line image in P3 to lie 
entirely in B. We have a one-one correspondence between real points on Q 
and generators o f  B. 

The second line of  (2.9) establishes a one-one correspondence between 
null polarities in Ps and traceless mappings on P4- If  a given x AB = - x BA 
in Ps is to represent a line (i.e. is to have the form x[AxBI),  then 

x[ABx CDI = 0 (3.6) 

or, equivalently, 

xABXABCD = 0 (3.7) 

where the four-index symbol (set o f  'dual'  coordinates o f  the line) is defined 
by (2.13). If  we raise all its indices, it becomes the set of  Grassmann co- 
ordinates for the polar three-space of  the line with respect to Q. We wish to 
express (3.7) as a condition on the traceless 4 x 4 matrix x~. Setting x = y 
in (2.12~ and skewsymmetrising on A B  we see immediately that (3.7) is 
tr OABX" = O. Multiplying this by an arbitrary yAB w e  obtain that t r y x  2 = 0 
for arbitrary tracelessy. Hence x 2 is a multiple o f  the unit  matrix. This is the 
required condition for x Ae to be PRicker coordinates of  a line. Consider the 
special case x 2 = 0. Since x 2 must be a multiple of  the unit matrix, a 
sufficient condition for this is tr x 2 = 0, or 

xo~x~ = 0 (3.8) 

But this is just 

xABxAB = 0 (3.9) 

This latter equation is the condition for the line x AB to intersect Q. ICe have 
a one-one correspondence between lines that do not  intersect Q and traceless 
involutions on P3. 

The condition for a line to lie entirely in Q is 

XA B xBC = 0 (3.1 O) 
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Application of  the first relation (2.12) in conjunction with (3.7) shows that 
this is equivalent to 

# 6 3'a or x axvy  z#6 = 0 for arbitrary skewsymmetric y and z, or 

# 8 xt~xv I = 0 (3.11) 

Now (3.12) is just the condition for x~ to have the form 

x~ = x/3G (3.12) 

(with Xff = 0 because x is traceless). We have established a one-one corres- 
pondence between (complex) lines in Q and structures in P3 consisting o f  a 
plane (X) and a point (~) on it. 

For a real line in Ps, 

x = - ~ x * t 3  ( 3 . 1 3 )  

For real lines in Q this gives X = i~Ptt 3 = i f  so 

x~ = i~/3~pe, ( f f f  = 0) (3.14) 

The plane X is now tangential to B and ¢ is its point of  contact. This is the 
one-one correspondence between real lines in Q and points on B, that is 
fundamental in twistor algebra. Equivalently, null lines in M are in one-one 
correspondence with null twistors. Note that the Pliicker coordinates o f  a real 
line in Q are the fifteen Dirac bilinears i~a AB¢ constructed from its null 
twistor. 

The general condition, in Ps, for a line to pass through a given point, is 

x[Ax Bcl = 0 (3.15) 

By means of the a-algebra methods, the corresponding relation in P3 can be 
shown to be 

x#(~x~ o) = O, xo(~x~) = 0 (3.16) 

If the line X AB /3 does not intersect Q, the matrix x o will be non-singular. 
Multiplying by the first expression by x~ and making use ofx~x~ = k6°o, we 
get 

k x  ~ °  = x~x~xP/3 (3,17) 

(The second equation (3.16) leads to the same result.) The null polarity that 
corresponds to the point in Ps is &variant under the involution that corres- 
ponds to the line in Ps, if and only if the point is on the line. 

We pass immediately to the special case when the point is on Q. The con- 
dition for a line to pass through a given point on Q is that the point shall be 
on the polar three-space of the line or, equivalently, the line shall lie in the 
polar byperplane of the point: 

x~x A~ = 0 (3.18) 
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Equations (3.15) and (3.17) in conjunction are easily seen, by application of 
the o-algebra methods, to be equivalent to 

(3.i9) 

In particular, the condition for a real line i~VJ~ in Q to pass through a real 
point x ~  (~ = ~x~ ~) on Q is, from (3.19) 

X l c ~ v l  = 0 (3.20) 

A realpoint in Q lies on a real line in Q if and only if the (line) image in B of 
the point passes through the (point) image in B of the line. 

The general condition for a pair of  lines x AB and yAB in Ps to intersect is 

x[A ByCD l = 0 (3.21) 

which, through the first equation (2.12) in conjunction with (2.11), leads 
immediately to the conclusion that the two lines intersect if and only if, for 
the associated traceless matrices x and y, (xy + yx) is a multiple of the unit 
matrix. For a pair of  lines in Q to intersect, we have the simpler condition 

xAByAB = 0 (3.22) 

(To prove this, note that it can be written x[ABy CDEF] = 0 which is the con- 
dition for the line x to intersect the polar three-space ofy .  Thus (3.22) holds 
if and only if there is a point on x that is in the polar ofy.  Equivalently, y 
is in the polar of  a point on x. This polar is a hyperplane tangential to Q. 
Now, a line in Q that lies in a tangent hyperplane necessarily passes through 
the point of  tangency. (The equivalent statement in M, that a null line in a 
given null cone passes through the vertex, is self-evident.) Hence, y passes 
through a point on x. This completes the proof that (3.22) is a necessary and 
sufficient condition for two lines in Q to intersect.) In terms of P3, (3.22) is 
just xay~ ~ = 0. For two real lines in Q, with 

We see that (3.22) is equivalent simply to 

2-~ = 0 (3.23) 

A necessary and sufficient condition for a pair of real lines in Q to intersect 
is that their (point) images in B lie on a generator orB. This generator is of  
course the image of the point of intersection of the lines in Q. The condition 
(3.23) for the intersection of two null lines in M is of  course one of  the 
fundamental relations of  the twistor algebra. 

The Grassmann coordinates of  a plane in P5 constitute a completely skew- 
symmetric quantity x ABc satisfying 

xAB[Cx DEF] = 0 (3.24) 

or, equivalently, 

xABC.~cD E = 0 (3.25) 
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Where XABC = (i/6)eABCDEF xDEF are the dual coordinates. Through (2.9) we 
can associate XAn c with two symmetric 4 x 4 matrices, x a~ and x,~, which 
specify its selfdual and anti-selfdual parts. The properties of the a-algebra 
can be employed to show that (3.25) is 

x~ox.t~e p ~  x~Px~%pa~ =(X~pXP~)~ - ¢x xP~6  ~ (3.26) - -  ~, o~ p ) ,), 

Contraction of this relation shows that x~px p~ is a multiple of 5~. If it is 
non-zero, x ~  can be taken to be the inverse ofxat  ~. The right-hand side of 
(3.26) then vanishes and (3.26) becomes a statement of the unimodularity 
of x,~. 

Consider now the degenerate case, when x~pxP¢ = O. Since (3.26) holds, 
x~oxPa = 0 is a sufficient condition for this. But a simple application of the 
properties of the a-algebra shows that this is 

XABC XABC = 0 (3.27) 

This means that the plane and its polar with respect to Q have at least one 
point in common. We therefore have a one-one correspondence between 
non-singular quadrics x ~  in P3, and pairs of non-intersecting mutually polar 
planes in Ps. 

When the plane does not intersect its polar, we have a pair of degenerate 
quadrics for which xc~pxP# = 0. Multiplying (3.26) by xu# in this case gives 

cr~s 0 Xls~Xc~pX~yaC p = 

So the rank ofxe~ is only 2, and it therefore has the form 

¢',~ ~ + x~×~ (3.28) 

The matrix x ~ has an analogous form. 
An intersecting special case arises for planes that are self-polar with respect 

to Q. Such a plane is necessarily complex, and the self-polarity can be 
expressed as selfduality or anti-selfduality of XABC. Thus self-polar planes 
fall into two classes. For an anti-selfdual plane x ~ = 0 and (3.26) is just 

x~[~x~t 8 = 0 

which is the condition for x ~  to have the form x~# = ff~ff#. For an anti- 
selfdual plane therefore, 

x a# = 0, x~# = flash# (3.29) 

The complex conjugate of an anti-selfduat plane is selfdual and has 

x et~ = - t ~ f  #, xa¢ = 0 (3.30) 

Self-polar planes in Ps are in two-one correspondence with points in P3 
(a self-polar plane and its complex conjugate corresponding to the same 
point). 

Consider now the real planes in Ps. The reality of XABC is easily shown to 
be equivalent to 
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x ~ = - ~# (x? )@ j3 ~ e (3.31 ) 

In the general case (when the plane does not intersect its polar and therefore 
x ~ is the inverse of x ~ ) ,  this is the condition for the quadric xe~ in P3 to be 
self-polar with respect to B. We have a one-one correspondence between non- 
intersecting mutually polar pairs of(real) planes in Ps, and quadrics self- 
polar with respect to B. On the other hand, for a real plane in Ps that does 
intersect its polar, x ~  has the form (3.28), equation (3.31) Nves 

xae = _ ~e~-e _ ~ (3.32) 

and x~#x ~ = 0 gives 

~'~ = XX = ~X = 0 (3.33) 

We have a one-one correspondence between pairs o f  mutually polar (real) 
planes in Ps that intersect in a point (note that this point is necessarily on 
Q), and point pairs in 13. Each such point pair lies on a generator orB,  which 
is the image of  the point of intersection of the two planes. 

In the special case of a pair of  real mutually polar planes intersecting in a 
line (this line is necessarily in Q), (3.28) becomes just 

x ~  = ff~ff~ (3.34) 

and we obtain a single point in B as the image of the pair of planes. This point 
is of  course the image of the line of intersection of  the two planes. Incidentally, 
we see from this that, through any (real) line in Q there is one and only one 
pair o f  mutually polar (real) planes. A real mutually polar pair of planes is 
characterised as follows: if XAB c is specified by x~5, x ~ ,  then its polar is 
specified by ixa~, - ix ~ .  

4. Identities Satisfied by Dirac Bilinears 

Various relations between products of  the scalar, vector, tensor, pseudo- 
vector and pseudoscalar formed from a spinor (or a pair of  spinors) are well 
known. They are the Pauli-Kofink and Fierz relations (Pauli, 1936; Kofink, 
1937, 1940; Fierz, 1936). The o-algebra enables S0(4, 2) covariant relations 
between bilinears constructed from a pair of twistors to be obtained, which 
contain the Pauli-Kofink and Fierz relations, and generalisations of  them. 

Let ~ and X be two twistors and construct the sixteen bilinears 

s = ~-'X, SAB = i~OABX (4.t)  

Put x = y  = × f  -(1/4)s in (2.12) and we obtain 

s ~A SE B = S2r/AB (4.2) 

sABCD scD = -  4ssAB (4.3) 

Where s aBco = (1/2)eABCDEsDE. These concise identities become more 
familiar, but more cumbersome, upon setting o A = (i7s3 ,u, T 5, 1), 
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~A = ( -  i7s7 u, --y s, 1) and writing them in four-component notation. It is 
very easy, by employing the o-algebra, to obtain similar expressions with 
four 'twistors' instead of two, but they are complicated. 

Equation (4.3) can be re-expressed in different but equivalent ways. Con- 
traction with the alternating symbol gives 

--4SSABCD = ( 1 / 2 ) e A B C D E F g E F G H s G H  = ( I / 4 ) eABCDEFe~EFGHIJs l j SGH 
= t O'X GHIJ ' 

" " ~ [ A B C D I  St jSGH 

Hence 

SSABCD - 3S[ABSCD 1 (4.4) 

The right-hand side here is equal to - 3 s  A [nSco l .  Contraction o f  BCD with the 
alternating symbol gives finally 

--  3 s s [ A B 6 C  El  = sMBCD sED (4.5) 

It is curious that (4.5) looks like a generalisation of (4.3), but is, in fact, just 
a reformulation of the same expression. 

If now SAn are constructed from a single twistor with s = 0, then (4.3) 
reduces to the condition for SAn to be Pliicker coordinates of a line in Ps, 
and (4.2) reduces to the statement that this line is in Q. In this case, (4.2) 
and (4.3) are a highly redundant set of  identities. Writing s u = s u6 and s s = s s6, 
if s s 4= 0 they can all be derived from the minimal set 

sus" = -  s~s "s  =(sS)2/ 
% 

sSsUV 2slVsM s t (4.6) 

It follows that if s s 4= 0 the entire san  can be built up from the knowledge of 

yU = sU/s s, l u = (s t + sUS)/s s (4.7) 

which transform as vectors under the conformal transformations in M induced 
by S 0 ( 4 ,  2) transformation in Ps.  They satisfy 

lUl.  = O, yUy u = yUl .  = 1 (4.8) 

and therefore specify a null line 

x u = yU + odu (4.9) 

The coordinates of the image in Q of the general point on this null line are 

~, = yU + ~l  u 

~s = (1 + ~)sSl (4.I0) 

~6 = _ _  0ZS5 

It is easy to verify that the Plticker coordinates of the lille in Q defined by 
(4.10) are just SAn. The  exceptional null lines that cannot be represented in 
the form (4.7) with a vector yU satisfying (4.8) are those on the light cone at 



100 E R I C  A. L O R D  

infinity and those on the generators of one-sheeted M-spheres centred at the 
origin (x 2 = - K 2) (equivalently, those in null planes through the origin). 

5. Discrete Con formal Trans]brmations 

The full group of transformations in P5 that preserve Q is 0(4, 2). The 
'reflections' induce reflections in M and inversions in M-spheres. The full 
group 0(4, 2) induces the full conformal group inM, which is generated by 

(i) Poincar6 transformations including parity and time reversal." 
(ii) Dilatations. (5.1) 
(iii) The special inversion x ~ ~ xU/x 2 in the Minkowski sphere 

x 2 =1. 

We wish to discover the image of this complete group in P3--i.e. the enlarge- 
ment of SU(2, 2) that corresponds to the full conformal group. 

We noted that (1/2)OAB and (1/2)OAB are generators of two inequivalent 
irreducible SU(2, 2) representations (S and S) of SO(4, 2). From (2.4) we 
can show that, if ff is a twistor transforming according to S, then the 'charge 
conjugate twistor' 

6c = C~ 

Transforms according to S. We have 

SAB = i~aAB ~ = i fC~AB~ c 

(5.2) 

(s.3) 

Since the matrices JAB differ from OAB by a change of sign when one of 
the indices is equal to 6, we can deduce that the reflection ~a .+ _ ~6 (corres- 
ponding to the special inversion (5. l(iii)) is represented in the twistor space 
by 'change conjugation': 

_+ ~e (5.4) 

In a similar manner we can show that inversion ~ -+ - ~u in the 1234 sub- 
space o f P  s (corresponding to 'PT' transformation in M) is represented by 

_~ ~,s ~ (5.5) 

and that the reflection ~2 ~ _ ~2 is represented by complex conjugation 

--, ~* (5.6) 

Now, any element of 0(4, 2) can be generated from products of 

(i) Elements of S0(4, 2) ] 
(ii) ~" ~ - ~" (# = 1 . . .  4) t (5.7) 

(iii) ~2 _+ _ ~2 

So the full conformal group is represented in P3 by products of the operations 

(i) Elements in SU(2, 2). ] 
(ii) Multiplication by 3'5. t (5.8) 

(iii) Complex conjugation. 
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The projective transformations in complex P3 consist of transformations 
SL(4, C) (up to a factor) and complex conjugation. The most general trans- 
formation that preserves the quadric B consists o f  

-~ ~*,  ~ -~PqJ (5.9) 

where P is a non-singular complex matrix satisfying 

pt~p = k(3 (5.10) 

with k an arbitrary complex number. Since P is  to be specified only up to a 
factor it can be chosen unimodular. The determinant o f  (5.10) then shows 
that k = -+ 1 or -+ i. The complex conjugate of  (5.10) shows that it cannot 
be +- i. For the case k = + 1, (5.10) states that P belongs to SU(2, 2). Since 
/37 s = - 7s/3, the most general solution o f  (5.10) with k = -- 1 is P = 7sS  
where S belongs to SU(2, 2). Thus the complete group of  projective trans- 
formations in P3 that preserves B is precisely (5.8). 

6. Cbnctusions 

We have shown that a new, manifestly 0(4,  2)-covariant formulation of  
twistor algebra is possible, based on Pliicker and Grassmann coordinates in 
projective geometry, in conjunction with the generalised quaternion algebra. 
The subject appears to be considerably clarified by these methods and new 
results are easily obtained. It is hoped that this will stimulate a renewed 
interest in twistor algebra, which contains some very elegant geometry. The 
o-algebra methods can be easily modified (by defining 06 = i) to deal with 
the welt-known correspondence between real lines in P3 and real points on a 
quadric with signature (3 + 3) in Ps,  and can be generalised to higher dimen- 
sions by employing the results of  Lord (1973b). This aspect remains to be 
investigated. 
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