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Creation-field theory from dimensional analysis
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Abstract. A Lagrangian is obtained which is invariant under space-time dependent
changes in the units of mass, length and time. It contains two scalar fields, one of
which is effectively the Brans-Dicke scalar (varying gravitational constant), while
the other can be interpreted as a creation-field,
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1. Introduction

The earliest physical theory with the property of covariance under conformal
mappings (spacc-time dependent redefinition of the unit of length) was Weyl’s
geometry (Weyl 1918, 1919). Its significance in this respect has been unfortunately
somewhat obscured by the fact that Weyl was attempting to interpret the group of
conformal mappings as the gauge group of electromagnetism. The possibility
of incorporating conformal invariance in physical theory has been considered more
recently by Hoyle and Narlikar (1971, 1972) and by Omote (1971). In a previous
paper (Lord 1972) we presented a conformally-covariant scalar-vector-tensor
theory in which the vector was essentially the Weyl vector (which is the Yang-Mills
field associated with the group of conformal mappings) and the scalar was essen=-
tially the Brans-Dicke scalar field (Dicke and Brans 1961) and also the ‘mass field’
of Hoyle and Narlikar. A special choice of the adjustable parameter in the Lagran-
gian density of the scalar-vector-tensor theory gives Omote’s Lagrangian density.
Dicke (1962) has shown how conformal mappings can be used to obtain alternative
formulations of a physical theory not possessing conformal covariance.

The conformal mappings discussed in the above papers are space-time depen-
dent changes in the unit of length. The changes in the units of mass and time are
linked to those of length by the requirement that % and c¢ be invariant (and con-
stant). To be completely general we should try to formulate physical laws in a
manner that is invariant under three kinds of transformation corresponding to
space-time dependent changes in the units of mass, length and time, independently.
The motivation here comes from the fact that observations depend on the com-
parison of two quantities at the same space-time point. We should be able to
choose our imposed °absolute’ standards of measurement (units of mass, length
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and time) arbitrarily and the formulation of physical laws should be capable of
expression in a manner that is independent of this choice, reflecting the fact that
the actual physical phenomena we are attempting to describe are independent of
the choice of units. The choice of a standard of measurement is then a matter
of convenience only, in that the description of particular physical phenomena will
in general be simpler for some choices than. for others. Moreover, there is no
reason to suppose that a single universal convention will-be appropriate for all

physical phenomena.
To clarify the above statements, note that the standard of measurément is usually

chosen so that % and ¢ are constants, so that only a choice of length unit remains.

Two particular choices are: (i) Newton’s gravitational parameter G is a constant,
and (ii) the rest-mass of an electron is a constant.” These two choices of gauge
for the group of conformal mappings may not.be mutually consistent.

In the following sections we shall present a formulation of physical law that
is fully covariant under independent (space-time dependent) redefinition of the
units of mass, length and time, and which looks like a creation-field (Hoyle and
Narlikar 1963) if we impose the convention (i) and like Brans-Dicke theory if we
choose the convention (ii).

The crucial point is that the question of whethel or not a physical quantity such
as ¢, i or G is or is not a constant is devoid of meaning, since the standard of
measurement ’ is subject to arbitrary choice and is not inherent in the actual physical
world. We are free to let any physical quantity that is not dimensionless be a con-
stant, by definition. However, when several such physical quantities can be com-
bined into a dimensionless number, then the question of whether this number is
a constant is a meaningful question that can be answered by reference to the real
physical world,

. From these considerations, it is apparent that we should be able to require of
a physical theory that it be indifferent to the standard of measurement (choice of
units, or conventions concerning which quantities shall be regarded as constants).

- The behaviour of known physical theories under space-time dependent changes

of the units of mass, length and time was investigated by Nariai and Ueno (1960),

who showed that by variation of the length unit independently along three spatial

aXes at each space-time point, as well as space-time dependent variation of the -

time unit, any Riemannian geometry (with metric signature +-4-4—) can be

regarded as flat. The generality involved in the possibility of defining the length .

unit independently along three axes can be restricted in a natural manner by noting
that any metric space (with positive definite metric) is Euclidean in infinitesimal
regions, so the system of length measurement in any such region can be chosen
so as to conform to the natural Euclidean metric. This amounts to an isotropy con-

dition on the length unit at a point, so that we have a single length unit at each -

space-time point. This isotropy of length measurement has an absolute meaning

since it is related to the Euclidean nature of infinitesimal regions, whereas a homo--

genelty of length measurement (length unit independent of position in space-time)
is only a relative concept. In a similar way, space and time measurement in a

Riemannian space-time can be linked by invoking a similar argument involving -

the natural Minkowskian metric of infinitesimal regions. This is tantamount to
choosing the physical quantity ¢ to be equal to unity. The linking of transforma-
tions of mass to transformations of length by defining % to be a constant has no
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such geometrical basis (at least in the theoretical structures that are available at

the present time). :
In section 3 we shall investigate the consequences of regarding both % and ¢ as
space-time dependent quantities.

2. Scalar tensor theories

Let a Lagrangian density be constructed out of metric, a scalar field o, and a set
of ‘matter’ fields, ¢s. Then under arbitrary variations of the fields, write

8.6~ 3T " 8g,, + B0 + F. 8 2.1)

where ~ is used to indicate that two quantities differ only by the divergence of a
four-vector density of weight 1. If .2 is the total Lagrangian then

gt =0, &=0, =0 ' (2-2)

are the Euler-Lagrange equations for the three fields g,,, o and ¢ respectively.
General covariance of these equations is ensured by requiring .£ to be a scalar-
density of weight I. Then under an infinitesimal co-ordinate transformation
x# — xk + £4, the variations are

8.@ = - (6“ -@)Lu,
8g/w = - (E w T fvm):
S0 o E;"% (2.3)

8’)0 = gw“ Guy ‘/J - g,, ‘/‘wa
where |, denotes covariant differentiation constructed out of the Christoffel symbols
formed from g,, (ordinary partial differentiation 3/0x* will be:denoted by -u).
The G, are a set of constant matrices associated with the tensor index structure of
. Substituting (2.3) in (2.1) gives

0~ T¥)p6u — Sot &y — EF(F. G + Fothyy] e

Integrating over a region of four-space on the boundary of which &, vanishes,
and noting that the £, are otherwise arbitrary, we obtain the identity

Ty = 048 + (F.G )y + Fby (2.5)

Hence, for any generally covariant scalar-tensor theory, the field equation for the

-scalar is implied by the field equations for the metric and the field equations for

matter. The field equation for the scalar is therefore redundant—it does not
carry any extra information. This property of scalar-tensor theories was dis-
covered by Horndeski and Lovelock (1972). It is true for example, for the usual
Einstein theory where the energy-momentum tensor is that of ‘a scalar meson
(Yilmaz 1958), for the Hoyle-Narlikar creation field-theory and for the Jordan
theories (Jordan 1955) (including Brans-Dicke theory as a special case).

If £in (2.1) is taken to be the matter Lagrangian density only (i.e. the part that
contains ), then J# and §are interpreted as the sources of the metric field and
the scalar field (F*" is the symmetric energy-momentum tensor (density) for i),
and & = 0 is still the set of field equations for 4. The above argument then leads

to a relationship
T uy =04 (2.6)
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between the sources, which is valid for any scalar-tensor theory that is generally
covariant,

If the matter Lagrangian is also conformally invariant, that is, invariant under
the transformations

88’#» = 2)‘g;uv
So = — Ao 2.7
& = NX

for space-time dependent A, we can substitute (2. 7) into (2. 1) to obtain the identity
I=s (2.8)

The energy-momentum tensor associated with any conformally invariant matter

Lagrangian constructed from i, g, and a scalar field o therefore satisfies the (con-
formally-covariant) relation

gva:U-pg (29)

3. Mass and time transformations
The units in which the Lagrangian density
(—8) (c"/162G) R + £ (¥) G3.1)

are expressed have the structure ML3T-2 (i.e. the same as /ic). The units of various
physical quantities appearing in it are

guv: L% (c¥167G): MLT-2, (mc/h): L (3.2)
We assume that .£is bilinear in ¥, It then follows that the units of ¥ are
Y, MiLisT (3.3)

for a spin-s field, if ¥ is expressed in spinor formalism. Hence mass and time
only occur in the combination MT-2, in any quantity occurring in the Lagrangian
density. The requirement that any interaction term involving two or more matter
fields ¢ shall have units ML?T-2, to make the overall Lagrangian density dimen-
sionally consistent, then implies that any extra coupling constant shall have units
in which mass and time occur only in the combination MT-2. Thus all the usual
Lagrangian densities in physics are unchanged if we make an arbitrary space-time
dependent change of the units of mass and time according to T — AT, M — A%T,
Dividing (3.1) throughout by %c gives a dimensionless Lagrangian density

(— @2 R+ LW) (3.4)

where « = 87Gli/c*, which has dimensions L2 and ¢ is the field (fic)3 ¥ which has
dimensions L°. Now only the unit of length appears in any quantity in (3.4)
so that in the new formulation, we have complete invariance under arbitrary changes
in the units of mass and time, Clearly, any interaction term in this formulation will
have a coupling constant whose units are just a power of alength. For example, the
minimal electromagnetic interaction is obtained by replacing 3, by du + (ie/fic) 4,
where 4, has dimensions M# L¥/2 T-1 [the spinor associated with the electromagnetic
field is d,4,0*" and o*” has dimensions L2, so this is in agreement with (3.3) for
spin 1]. In terms of the field a, = (fic) 4, the derivative operator is d, + ia, 1/,
where a is the dimensionless coupling constant e?/Ac. As a second example, the




2

Creation-field theory from dimensional analysis 39

weak interaction involves four spin-} fields ¢ (dimensions L~%2). Omitting the
detailed V-A structure it is just

(-G, @ (3.5)

which is required to be dimensionless so G, has dimensions L2, To obtain the
usual formulation we multiply by %c and rewrite in terms of ¥ = (%c)t . The usual
weak coupling constant is therefore G,/%¢c, with units (ML) T2,

Thus there is a very simple prescription for expressing any Lagrangian field
theory in a form in which the units of mass and time do not appear. The Lagran-
gian densities (3.4) with this property are still not covariant under length trans-
formations (conformal mappings). The curvature scalar does not transform in
a conformally covariant manner because the derivatives of the length unit appear
through the derivatives of g,,, and the derivatives of ¢ are also not conformally
covariant (the fact that (mc/#) and the coupling ‘ constants’ can no longer be
regarded as constants when a length transformation is carried out is of course
not a drawback from the viewpoint we are adopting). However, eq. (3.4) can
easily be generalised to a conformally covariant form by means of a scalar field .

4, Length transformations

From any scalar field ¢ we can construct a Weyl vector
¢y=—0"ro.y “4.1)

which under conformal mappings (2.7) transforms according to ¢ — ¢, + d,A
This vector can be used to construct conformally covariant derivatives of any fielde
according to the prescription of Lord (1972). But now there is a considerabl,
simplification because the Weyl vector is now taken to be simply the derivative of
a scalar, The conformally-covariant derivative will be denoted by a semi-colon
and for a Weyl vector of the form (4.1) is just

o =0 (0 M),
The comma denotes covariant differentiation constructed out of the Christoffel
symbols formed from the ‘ dimensionless metric’ ‘g.rm, = og,,. Then by definition
0;[1,=03 g/'LV;P =0 (4-2)

The prescription for constructing the conformally covariant Lagrangian now reduces
to the following: In any Lagrangian (3.4) replace all the fields throughout by the
dimensionless fields

® -] .
8wy = 0°8ups =V 4.3)

and replace all parameters such as coupling ‘constants’ and Compton wave-
lengths by dimensionless parameters.

(—gl ()™ R+ L) 4.4
(where « is a dimensionless constant) is now conformally covariant. The con-

formal covariance is trivial in the sense that ¢ (which effectively defines a length
unit) does not appear. However, we can restore it by rewriting (4.4) in terms of

gu»» o and ¢ instead of gom, and z,b We have



40 Eric A Lord
(—* R = (—g)t o* (R — 607 To) @5
~ (—2)t (6®R + 6G.Ma'“)
where
= (—g)t [(—g)l ol (4.6)

Thus a Lagrangian density for the free o field is actually implicit in the formula.
tion and does not have to be added as an extra term. The fact that ¢ does not
appear in the formulation (4.4) gives rise to no paradox, since we have already
observed that the Euler-Lagrange equation of the scalar in a scalar-tensor theory
contain no additional information. The expression (4.5) is just the Brans-Dicke
Lagrangian for w = — 3/2. This value of w is of course hopelessly unphysical.
In order to change the value of w we would have to add on an additional Lagran-
gian density for o. But this cannot be done without violating the conformal sym-
metry, since the conformally-covariant derivative of o is by definition zero. This
difficulty was not encountered in Lord (1972) because ¢, was treated as an indepen-
dent vector field, it was not constructed according to (4.1). Note also that the
matter Lagrangian of (4.4) expressed in terms of g,, and i contains o, whereas
in the Brans-Dicke theory the scalar field is not contained in the ‘ matter > Lagran-
gian.

It is possible to obtain the Brans-Dicke theory precisely, with arbitrary w, from

a conformally-invariant Lagrangian density. This is done by introducing a second
scalar field C, which is dimensionless.

5. Two-scalar theory

Let C be a dimensionless (conformally 1nvar1ant) field and modify the Lagrangian
den51ty (4 4) to

(—2)k (K)t (R — B2 C.uC.r) + £(q, ) G

where .£ (g, z,bo) is constructed from ¢2 go,“, and g% z,l: in the same way that the .,0(1,5)

+of (4.4) was constructed from g,, and . The constant ? is dimensionless and ¢
is some function of C. We now have two scalar fields ¢ and ¢’ = oe€. In terms
of these two fields, the Lagrangian density is

(—g)t (26)"1 (0% R + 6o.y0'F — B(0%/02) ¥, (o'[0) ¥ (0'[0)) + L(go, )
(5.2)
In the special gauge in which o' is constant (without loss of generality o’ = 1) the

term in brackets becomes the Brans-Dicke Lagrangian w1th w=%(B— 6) (Brans-
,chke field ¢ is ¢2). Thus if we choose

q=¢° (5.3)
the matter Lagrangian will be independent of ¢ in this gauge, and the theory will
be precisely Brans-Dicke theory.

- Alternatively, choose the special gauge in which ¢ = 1. We obtain
(=82 @) (R — BCLCH) + L£(e ¢),  (C=logo’) (5.4
This is a creation-field theory in which the coupling of the C-field and the matter

field ¢ comes from the fact that the inverse Compton wavelength (mc/#%) is a con-
stant multiple of ¢° (the mass terms have become interaction terms, as in Dicke 1962)

¥

o
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and coupling ‘constants’ are constant multiples of appropriate powers of &°.
Additional coupling comes from the kinetic terms because derivatives of ¢ occur
in the combination

op =, + NC.ui (5.5

where the comma denotes covariant differentiation using the affine connection

0
L] 8 Co 4 82 Cu— g (5.6)

It is a curious fact that the affine connection does not actually enter into the
Lagrangian densities of integral-spin fields, so the comma in (5.5) could in certain
cases be replaced by a dot. To deal with half-integral spin we would have to
enter into the complexities of a conformally-covariant generalisation of Kibble-
Sciama (Kibble 1960; Sciama 1964) theory. This we shall not do; we shall only
point out that the discussion of spinors in (Lord 1972) shows that the Dirac field
will couple to the C-field only through its mass term.]
The field equations that follow from (5.4) are, for g, -
‘ R,y — ?!ngwR = K [T,uu ~f(C..C., — %guvc-pc'p)] (5.7)
(where f'= B/k), and for the C-field we can make use of the identity (2.8) for the
scalar o’ of (5.3) to obtain

fOC=eT (5.8)
The identity which follows from the divergence of (5.7), i.e.
T, = fC+ 0 C (5.9)

is seen to be just a particular case of (2.9).

The identification of the source of the C-field as the trace of the energy momen-
tum tensor makes this theory different from the usual C-field theory in several
respects. If we take the matter to be a fluid with zero pressure (T, = puyi,)
satisfying (5-7-9) (A naive procedure, considering the 'manner in which these
equations were obtained), then

(putu?),, = fC* 0 C = C* pe°
gives

ut (pu”),y F put 0" = CFpe® (5.10)
Multiplying by u,, we get

(pu”),y = pC* uy,e® (5.11)

which is an explicit expression for the source term that modifies the contimﬁty
equation for rest-mass.
Substituting back into (5.10) gives

ut u” = e€ (8,4 — ut u,) C” | (5.12)

Hence in this theory the world-lines are not geodesics. The quantity in brackets
in (5.12) is the operator that projects vectors on to the hypersurfaces perpendi-
cular to the world-lines. The world-lines of the fluid are geodesics only if Cis a
constant over each such hypersurface.
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6. Cosmological solutions

We now look for cosmological solutions of the system of equations (5.7), (5.8).
That is, solutions with C and p dependent only on time, in a co-moving coordinate
system in which the metric is of Robertson-Walker form

de? — (1 + «r2/4)=2 82 (¢) (dr? + r2(d6? + sin?f d9?))
(k=41 or zero)
A remarkable feature of the theory is that it admits on/y universes in which the

density remains constant.
Equations (5.8) and (5.12) are

(6.1)

fé = pe°, p = pecé (6.2)
which lead to

p=scC
Therefore

p=po+1fC
With this expression for the density, the Einstein equations (5.7) are simply

K (4po — 3p) = — 6S/8 (6.3)

d -
k (2p0 —p) = 2k/§* — 24, (S/S) (6.4)

The (44)-equation is
3k p
kpo = 3+ 3 (SIS,
which, when differentiated, gives
0= —«S/S% + (S/S)a—t (S75). 6.5)

Eliminating d/dz (S‘/S) between (6.4) and (6.5) leads to S=0 (static universes)
or (pg — p/2) = 0. Thus the only cosmological solutions have constant density

p=2pg (6.6)
Substituting this value of p in (6.3) and (6.4) gives equations identical to the usual
cosmological equations for empty universes with a cosmological constant

A:KPO::-%:KP (67)
That is, the metrics for our universes of constant density are identical with the
metrics that in conventional general relativity correspond to empty universes.
These solutions are

(@) k=41, S=cosh(t+/43)

® k=0, S=exp (tV4]3) (6.8)

(¢) k= —1, §=sinh (£ /4/3)

For k =0 we have simply the steady state cosmology. Denoting the Hubble
constant by T, the constant density p satisfies xpT? = 6, as in the steady-state

7o
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solution of the wsual C-field cosmology. In our view, the only acceptable cosmo-
logical models in any theory are those with k = + 1, since only these correspond
to universes containing a finite amount of matter. In our case this leads to a uni-
verse with a contracting phase followed by an expanding phase. This will lead

to Olber’s paradox unless the matter is non-radiating in the contracting phase
(Lord 1974).

With p = 2p,, C = constant +¢(fp)®. It is somewhat disturbing that the
constant must be — oo to comply with (6.2). However, only the derivatives of
C enter into (5.7), so perhaps this peculiarity should not be taken too seriously.
The undifferentiated field C is unobservable.

To summarise: the creation-field theory we have presented differs from the usual
one in that only universes with constant density are allowed. The usual C-field
theory admits also universes which asymptotically approach a state of uniform
density for large . Whether this is an advantage or a disadvantage is arguable,
One of the difficulties with general relativity (and modifications to it including
Hoyle-Narlikar theory) is that it provides a very large number of alternative
cosmological models with no clear criterion for deciding which one should
correspond to the real universe. Our theory, in conjunction with the requirement
k =+ 1 leads to only one model if pressure terms are neglected.
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