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If a cosmological term is included in the equations of general relativity, the linearized
equations can be interpreted as a tensor-scalar theory of finite-range gravitation. The scalar
field cannot be transformed away by a gauge transformation (general co-ordinate trans-
formation) and so must be interpreted as a physically significant degree of freedom. The
hypothesis that a massive spin-two meson (mass ;) satisfies equations identical in form to
the equations of general relativity leads to the prediction of a massive spin-zero meson
(mass 7.), the ratio of masses being mo/ms=+/73.

3

§ 1. Introduction

Recent work by two of the authors® (K.P.S. and C.S.) has provided a very
strong evidence that general relativity may play a crucial role in the physics of
elementary particles, with the f-meson interpreted as a short-range gravitational
field. " In view of this, it is particularly important to understand the relationship
between the gravitational theory Wlth massless gravitons and the corresponding
finite-range theory.

A characteristic of linear spin-s theories in special relativity is that the
theories corresponding to zero mass are zof in general limiting cases of the
theories for particles with finite mass. For the mass zero cases, there are only
two instead of 2s+1 polarization states, and the free field equations are in-
variant under gauge transformations. The mass terms break the gauge invari-
ance,

Boulware and Deser® have recently concluded that the gravitational theory
of Einstein (which is a massless spin-2 theory) cannot also be obtained as the
m—>0 limit of a theory of finite-range gravity. However, these authors have
imposed restrictions on the form of the mass term, which in our view are artificial
restrictions leading to unnecessary difficulties. Conventional theory (without the
cosmological term) is a theory of a massless spin-2 field. It is qualitatively
different from the massless spm -2 theory of special relativity in two fundamentally
important respects: .

(i) It is highly nonlinear (self-interacting),

(i) it is a geometrical theory. Space-time is no longer a passive back-

ground to the physics as in special-relativistic theories.

When a mass term is added in a linear spin-s theory, the gauge invariance
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is broken. There is no justification for the belief ‘(based on analogy) that this
is necessarily the case with a nonlinear' spin-; theory. Moreover, for finite-range
gravity it would seem unreasonable to expect the gauge invariance to be broken,
for the gauge invariance in this case is simply the requirement of covariance
under general co-ordinate transformations. Boulware and Deser have argued
that the mass term must break the gauge group in order to give rise to the
extra degrees of freedom (extra spin states). This' argument appears uncon-
vincing for a non-linear theory when we observe that the concept of spin is only
capaBle of precise definition when we go to the lznear approximation (weak
field approximation). Extra degrees of freedom will appear in the linearized
theory provided the approximate (linearized) gauge group is violated by the
approximate (linearized) equations—it is 7oz necessary for the exact gauge trans-
formations to be violated by an exact non-linear theory with non-zero rest mass.

When matter is absent, the flat (Minkowski) space-time is a solution of the
massless gravitational theory. This enables the equations to be linearized when
the field is weak and treated as special-relativistic equations with a flat back-
ground metric. Boulware and Deser require the mass term to be such that
this solution is retained for the finite-range gravitational theory. However, the
fact that space-time is experimentally nearly Minkowskian is' adequately accounted
for by requiring the range ‘of the macroscopic gravitational theory to be suf-
ficiently large compared to the size of regions in which space-time is known to
be flat. The requirement of flatness of empty space-time has no more justification
(on logical and experimental grounds) than the requirement of wniform curva-
ture. Indeed, we could even argue that it is a less justifiable hypothesis, since
flatness is a very special case of uniform curvature. We conjecture that the
difficulties encountered by Boulware and Deser, and by Iwasaki® in tensor-scalar
gravitational theories arise because the background space-time is taken to be flat.

Having argued that the mass-term in a finite-range version of Einstein’s
theory would not be expected to violate the gauge invariance (general covariance)
and that the solution for completely empty space need not be Minkowskian, the
obvious candidate for t\he mass term is the cosmological term of the usual
theory.

§2. Spiniwo theories

We review briefly the linear spin-2 theories in order to clarify their relation-
ship with the non-linear theory of Einstein. For non-zero mass we have

D‘ﬁ/ﬂ + m2¢ﬁv =0 s (¢/w = ¢"I‘) (2 ‘ 1)
0up* =0, $"=0. (2-2)

These equations are completely equivalent to the Dirac-Fierz-Pauli spin-2 equa-
tions. The first subsidiary condition (2-2) eliminates four of the ten components
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of the wave function and the second eliminates one more, leaving 5 25+1 in-
dependent components.
The field of the massless spin-2 theory is a rank four tensor

Givpo » 2-3)
which has all the symmetries of a Weyl tensor® and satisfies
0,8""" =0, 0r8ups + 0ubirps +0uPrups =0 2-9
~  The potentials {,,={,, are defined through
| Boveo =0ubros = ubuns s Bouw=0,C0p— 0L, - (2-5)
The second equation (2-4) is now automatically satisfied and the first is
D€ + 0,8 =0,,8" =0, =0. (€= (2-6)

The gauge transformations

C/w—“)clw - a/oév - av&/&

leave the fields ¢,,,, unchanged. The gauge group is restricted to transformations
with the parameters satisfying

0é,=0 27
by a ‘Lorentz condition’ \
B @8
which reduces (2-6) to
[¢,,=0. (2-9)

The remaining gauge freedom can be used to transform away the trace () of
the wave function.

§3. Linearized finite-range gravitation

The cosmological term in Einstein’s equations
R/w - Ag/w +K (T,w - %gva) =0 (3 . 1)

can be interpreted as a mass term for gravitons, giving rise to a finite range
for the gravitational field. In the ‘weak field approximation’ we cannot regard
the field as a small perturbatwn on a flat background metric, since even in the
absence of matter the Minkowski metric is not a solution of (3-1). We can,
however, take a space of constant curvature as a background. The appropriate
metric is the de Sitter metric

s ve—"=1—%x2. (2 = 2,5" = P’ a”) (3-2)

In the definition of ¢ and in the following discussion, indices are raised and
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lowered with the Minkowski metric 7,,. The Ricci tensor constructed from a
metric 7,,+&,, to first order in the Ly is

3O+ =Ll =8, (€=81) 3-3)

Partial differentiation is denoted by a dot. That this has precisely the same
form as the left-hand side of (2-6) is of course the justification for the statement
that gravitions have spin 2. The gauge transformations are infinitesimal co-ordinate
transformations. It is important to recognize that the interpretation of Einstein’s
theory as a theory of particles of spin-2 has meaning oxly in the linear approxi-
mation,

The Ricci tensor constructed from a metric

€ (7 + &) 34

(representing small perturbations on a de Sitter background) can be obtained
immediately from (3-3) by making use of the behaviour of a Ricci tensor under
a conformal mapping.” We obtain

Ru=3C0+Cm—Coo—Cl00)
+ (O + 900 —20.,0.,+27,,0.,0°°)
=0, Lo+ 8= L+ 7, [ — 3L+ 28570™] — 28,,07)
+ (Cwldo —=7,,070. ). (3-5)
This is to be equated to ‘
Ae* (1 +8) — £ (T —37,,T). (3-6)

The second line of (3-5) is just the Ricci tensor of the background space,
which by definition is equal to Ae*7,,. Hence these terms in the equation can
be deleted. We then have the linearized version of general relativity, but with
a de Sitter background instead of a flat background.

The values of the derivatives of ¢ occurring in (3-5) are explicitly .

A T
0‘,,=€e Ly s

A . 4, “
0‘.,”='é‘e <77,w+€e $p$u> ’ (3'7)

The relationship between the perturbations & » and their derivatives at a
chosen point of space-time, implied by the equality of (3:5) and (3-6), can be
written down most simply by choosing the origin of the co-ordinate system to
be the point in question. The ¢-terms are simply replaced by their values at
the origin
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‘

e, 0.0, Oy, Oo~Zs, (3-8)
‘ 6 I
The only terms that survive in (3:5) are the first line and the fourth line. At

the origin, the equations become
Dc,uv - B[hv - B»-_,.N%A (C/w + %’W»C) —2¢ (T/w - %ﬂ/wT) ’ (3 ° 9)
B = (&" —47"0) .. | (3-10)

The same equation as this was in fact obtained by Boulware and Deser,
the peculiar form of the mass term (A-term) being derived by them from con-
sistency requirements when a mass term is added to the linear massless spin-2
theory. That precisely the same mass term arises here from the linearization
of Einstein’s equations (3-1) is remarkable.

When the linearization is carried out on a flat background space-time, one
usually imposes the (linearized) harmonic co-ordinate condition (cf. (2-8)):

8,=0. (3-11)

However, it is not valid to assume that this co-ordinate restriction is relevant
in the present context. We could set 8, equal-to any quantity linear in the ,,
and containing first derivatives of ¢ in each term. This would have the desired
effect of eliminating unwanted second derivatives of the &,, that occur in con-
junction with the d’Alembertian term in (3-5), but would give rise to additional
A-terms in (3-9). The physical interpretation is therefore crucially dependent on
the choice of subsidiary condition to replace (3-11), and we need a criterion for
selecting the correct (physically significant) restriction. .Moreover, we cannot
assume that the {,,’s are the physical fields associated with ‘gravitons’. In the
usual linearization on a flat background the ¢, transform like a tensor under
the Lorentz subgroup of -the infinitesimal group of co-ordinate transformations.
In the present case this is not so. The criterion we shall use for selecting the
appropriate physical fields-and the appropriate coordinate restriction, is the re-
quirement of covariance under the de Sitter group. l

§4. Gauge transformations

The gauge transformations for the theory given by the equality of. (3-5)
and (3-6) are the infinitesimal co-ordinate transformations:

xh—oxt+E4. 4-1)

By carrying out such a transformation on the metric (3-4) and putting the
transformed tensor into the same form, we easily obtain the transformation laws
(to first order in &%)

e —e (14 20.,8°), ‘ “4-2)
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U-p_> (6-/4 - Efﬂo‘-p) - (Goppép) ’ (4' 3)
eZvCIw_)eZo- (C/w - Eﬁanv - ’S&Cpp) - eZa— (E/‘-v + 5»-/& _I_ 277#90--/75[)) ’ (4 * 4)

The terms in the first bracket in (4-3) and (4-4) are the terms we would
have if ¢., and €*¢,, were respectively a vector and a tensor. The second
bracket in (4-4) brings out the analogy between the behaviour of e%,, under
infinitesimal co-ordinate transformations and the behaviour of the four-potential
under electromagnetic gauge transformations. Defining the quantities )'5"" from
the contravariant tensor density

V—ggr=e" (" —y*), o (4-5)

wefind that the transformation law (to first order in &) is
A (0§ En — E0,1™)

— e (EH & — e, — 290 EF). }

The homogeneous terms (first bracket) are the terms we would have if
. €*y" were a tensor density (of weight 1).

The inhomogeneous terms in (4-4) (and also in -(4-6)) vanish if and only
if the parameters &* have the form

(4-6)

§”=l”—%<l”x,,x"—%l"xz)—I—l"”x,,, (47)
where 2* and 2*= —2** are constants. Equation (4-7) is the general solution of

§pt€0u=—29,0.,6. This corresponds to the infinitesimal de Sitzer group.
The quantities ¢*¢,, transform like a tensor under the de Sitter group, and
€”y* transform like a tensor density.

From the quantities e“f,, we can form a de Sitter invariant

¢:glwez,c;w:77/wC/w=C 7 (4.8)
and a set of quantities that transform like a traceless tensor under the de Sitter
group. . :
¢lw:ezaclw_%g/quzezw(clw_%WMC)' o (49)
We shall interpret ¢ and Pu as the fields (wave-functions) associated with a
spin-zero particle and a spin-2 particle respectively.

A de Sitter covariant restriction on the fields is provided by the require-
ment that the covariant divergence of the tensor density e*y* shall be zero:

L3 v\ y o
I (4-10)
where {:ﬂ are the Christoffel symbols constructed from the de Sitter metric -

(3-2). To first order in the Couvy 1 =C"—%9"€ so this restriction is
B=0"C—40.,8". (4-11)
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Equation (4-11) is the de Sitter covariant version of (3-11). Rewriting
(3-9) in terms of the de Sitter covariant fields ¢,, and ¢ and imposing (4-11)
lead to the relations :

@O-24)¢~2£T,

| (4-12)
(I—_—] - %A) ¢/wN -2 (T/w - %ﬂ/&vT) . J

If A is- negative these are in the form of Klein-Gordon equations for a mas-
sive spin-zero field and a massive spin-2 field, with source terms, with Compton
wavelengths moc/fi=+ —24 and msc/h=+ —24/3. Spin-one is eliminated by the
subsidiary condition. Note that Egs. (4-11) serve only to identify the masses
of the particles—they are relations satisfied at a single point, and not true field
equations—the field equations are the extremely complicated (3.5,6). The ratio
of masses predicted. for the two kinds of ‘heavy graviton’ on the basis of this
theory is

" = v3. (4-13)

. mz

§5. Geometrical and physical interpretation

The Einstein equations with A4=0, when linearized on a flat background
metric, become the equations of a Lorentz-covariant theory of a massless spin-2
particle. We have shown that with 4<0 the equations linearized on a de Sitter
background become the equations of .a de Sitter covariant theory of massive spin-2
and spin-zero particles, The equations can easily be expressed in a form in
which the covariance under de Sitter transformations is readily apparent.

In the following, indices are raised and lowered with the de Sitter metric
(3-1) and the notation |z is used for covariant derivatives constructed from the
Christoffel symbols associated with that metric. We easily find that, at the
origin, )

4
¢lo~Dlg, ¢ﬂ»}ZND¢M—§A¢,w . G-D

Then (4-12) is
ol —24~2T , }

(5-2)
¢,uu{$ + %AQS/&»N - 2"" (T/w - %gle) . (T = glelw)

These are tensor equations (i.e., both sides transform covariantly under de Sitter
transformations) satisfied at the origin. Since any point can be chosen as the
origin by carrying out a de Sitter transformation, we can infer the validity of
the equations everywhere. The Einstein equations linearized on a de Sitter
background are equivalent to the de Sitter covariant equations
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blo—24¢=2kT , } (5-3)
Sulot 3B = —26(T,,—39,,T), ($,,9"=0)
provided we impose the (de Sitter covariant) subsidiary condition
=0, ¢ =99 ($n—19nd). (GIE)
From (5:3) and (5-4) we can easily deduce the continuity equation ‘
a=0. (5-5)

To obtain this we must bear in mind that the derivatives do not commute but
have a commutation law defined in terms of the Riemann tensor of de Sitter
space, which is

- % (9090 —9,09.,) - (5-6)

Equation (5-5) follows from the massive tensor-scalar theory given by (5-3)
and (5-4) only if the A terms are precisely the ones indicated, corresponding
to mass ratio /3.

The usual linearized massless gravitational theory is obtained as'the limiting
case (4—0) of the theory given by (5-3) and (5-4). The massive linearized
theory is not invariant under general gauge transformation -(infinitesimal co-
ordinate transformations), but it is invariant under the de Sitter subgroup. In
the limit 4—0, the background space-time becomes Minkowskian and the equations
become

DC,” =—2f (T/w - %ﬂ/wT) . (5 * 7)
with a subsidiary condition
=1 (5-8)

corresponding to the usual linearized Einstein equations with the harmonic co-
ordinate condition. In the limit the full gauge-invariance is restored, except that the
condition (5-8) imposes the restriction [Jé*=0 on the gauge parameters. The
usual linearized Einstein theory with harmonic co-ordinate condition is a tensor-
scalar theory, and not a pure spin-2 theory. Only when the energy-momentum
tensor is fraceless can we find an infinitesimal co-ordinate transformation that
respects the harmonic condition, and that transforms away the scalar. We then
obtain a pure massless spin-2 theory.

We feel that the importance of the finite-range tensor-scalar gravitational
theory lies not so much in the possibility of interpretation as a gravitational
theory in the usual (macroscopic) sense (where A is very small and possibly
zero), but rather in applications to particle physics. The hypothesis here is that
the strong interactions take place in regions of intensely curved space-time.b In
these regions the coupling constants G of the gravitational theory is replaced
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by a constant of the same order as the strong coupling constants, and the re-
levant ‘cosmological’ constant is —$m,* (suggesting a very short range ~10~*
cm). The fmeson and a scalar meson of mass m,+3 together determine the
metric, through equations identical in form with Einstein’s equations (3-1). The
relationship between ‘the mesons and massless gravitons is analogous to the well-
known behaviour of ¢° as a ‘massive photon’.®

Chen” has shown that, if a mass term is included in the equations of a
(spin-1) Yang-Mills field, the invariance under the Yang-Mills group can be re-
tained in the presence of a mass term by introducing a spin-zero field into the
formalism. The spin-zero field in ‘finite-range gravity’ plays precisely this role.
In this context it may be noted that Utiyama® was the first to point out that the
gravitational field of Einstein’s theory is a kind of non-abelian gauge-field for
the general co-ordinate transformation (see also the work of Kibble,” Sciama'®
and Lord.") Equation (3-1) in fact represents this Yang-Mills (i.e., non-abelian
gauge field) theory with a mass term that does not violate this gauge group.
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