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ABSTRACT

_ The theory of spinor fields in interaction with gravitation is described. The massless
Dirac equation is modified by the interaction and becomes identical in form with the nonlinear
spinor equation that proves the basis of Heisenberg's Unified Field Theory. When applied

to electromagnetism the theory

N special relativity, the Lorentz transformations,

interpreted as rigid rotations of a Cartesian co-
ordinate system in flat specetime, are fundamental;
the basic equations of physics are constructed in
such a way that their form is independent of the
choice of Cartesian coordinate system. That is
they are required to be invariant under Lorentz
‘transformations. Thus the most general admissible
equation is a spinor equation.

In the presence of gravitation the introduction of
a Cartesian reference system is no longer possible,
we are forced from the outset to work with general
(curvilinear) coordinates. The requirement of
Lorentz invariance has to be abandoned in favour
of general covariance. The representations of general
coordinate transformations are tensor densities; the
generalisation of a Lorentz-invariant tensor equation
{o a generally covariant equation is straightforward,
and simply consists of assigning ‘weights’ to tensor
field and replacing derivatives by -covariant deriva-
tives. However, there is no such procedure that
can be applied to spinor equations. Thus, when
Dirac discavered the special-relativistic equation for
the .electron, which is a spinor equation, the problem
immediately arose of how do describe mathemati-
cally an electron in a gravitational field. Can.we
assien a meaning to a spinor when spacetime 18
not flat, and can we construct a generally covariant
Dirac equation ?
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G : ‘ leads to an unresolved difficulty connected with charge conserva-
tion and the spin-density of electtomagnetism.

The solution given by Schrodinger was to regard
a spinor as invariant for coordinated changes, and
to” regard the Lorentz group that is represented by
Spinor transformations as the group of rotations
of a set of orthonormal reference vector fields,
not a coordinate transformation. Thus, choosing
four orthonormal vectors I * (a=1, 4) at each
spacetime point (a ‘letrad’),
— 1
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and

h;,l,ﬂh'pbnﬂb e g‘u;;,
where h}f is the inverse of the matrix /1 #.
Change to a new tetrad is given by

ﬁ.up‘ == Aﬂbhb#
where A% js a (spacetime-dependent) Lorentz
matrix. Let 47 be the four usnal Dirac matrices.
Then Y= h »v® satisfy

b (pky? + vk = g’
and the spinor representation L. of the J.orents
matrix A is given by

L»—l jf”L o A!jn?'h_ |
The derivative ¢,y of a spinor  framforms under
tetrad rotation to

Loy -1 (0,Ls) &
so that a spinor connection [7, has to be tntroduced,
with  transformation  faw  defined s that  the
covatiant’ derivalive )fos-—-l‘“:;’: uumfum'{e
simply 10 Ly, . The cquation g8 -1 -0 1
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lhen invariani tunder both general coordinate trans-
formations and Lorentz rotations of that tetrad,

and i1s the required generalisation of the Diac
cquation,

The ‘spin coefficients’ or ‘Ricci rotation coefficients’
\ﬂﬂpgh” |p=bh#+ F#hphk

possasses the shewsymm atry )l o . P) ba A spinor
connection can be constructed frem the Spln coefﬁcwnts
according to ['y= %Rnbpyy The components
of such a spmor connection, determined entirely
by the /i # and their derivatives, are the Fock-
Ivonenho coefficients.,

Ths above prescription appears at first sight to
be a complete solution to the problem of spinors
in general relativity. This is not so; the work
of Kibble! and Sciama2? leads to the conclusion
that the existence of spinors requires a profound
modification of Einstein’s gravitational theory. =

Two facts about FEinstein’s theory are significant.
First, the energy-momentum tensor on the right-
hand side of Einsteins ficld equations is necessarily
a symmetric tensor. The canonical energy
momsntum tensors of various physical fields that
arise from consideration of Noether's theorem 1n
spccial relativity in general have a skewsymmetric
part. Second, the field equations are obtained by
variation of the Lagranglan

— 3 L
2k( gy*R + 2

with  respect to g,,.
When » is the Lagrangian density

( — g)}/(ib?“‘bm, - 'J‘r;_,-_'}"#‘rf’)

of the Dirac field this variational principle
is not pyoperly defined. since this scalar density
con‘a:ns the 16 fields /i # instead of the 10.g,,.
Thus it seems that the h # rather than the g,
ought to be regarded as the field variables for
the gravitational field. This possibility has been
investigated by various authors (Sciamaz, Mg¢llers,
Pelegrini and Plebanskit).

Following Sciama, we use an approach which is
analogous to Palatini’s approach to the variational
srinciple of conventional general relativity, We
cxpress

in terms of h #and A%, and tieat /i 7 and A% as
independent variables in the variation.

The Riemann tensor is
R, = M0y g — 200 — Mg™A " 4 AN
v that

—ag) R iy
- hpa’“b (Adf.rp
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hP74y = B (R P hpThThy7),

h = det (h,°) = (-~ g)%
Variation of h F gives

k(R —31h,R) + kr,° =0
where the tensor density 7" IS given by

D= 31‘ 2ah M

1w

Thus we oblaln 16 equations instead of the usual
10 :

R#p — %gp_pR + kpr == n
where R v and T,, are not necessarily symmetric.
Variation of Atbp leads 10
h(Q,F + 8,2, —8,P.) = kE,,"
where . is the torsion tensor

TPy — TP, 0, =20,

and F P is given by

30 =1 S npPare?,
and is just the spm-dens:ty : that 1s, the ‘current’
assoctated with the group of tetrad rotations.

For the Dirac equation (for simplicity omitting
the mass term), the Lagrangian density

(5("}’#':&1 ) .‘2”1 p,'}"ﬁ‘r!’)
= [h (S — oy — $ 9 T v4) 4]

contains the ‘spin-coefficients’ in the term

£=hi

A APP#;‘ {}’Ppr }’p,} (/“ = i' iﬁppﬁasbyﬂ'?ﬁ‘;; & J} voe
Thus in this case, Y is completely skewsymmetric
and its ‘dual’ is the axial vector

S.[;r — % J?ﬂ?ﬁd}t
This introduces a torsion
2uvp = — kSyy,p.
The connection coefficients are found from

gy.p,fp = 01
Fppp = {Py,p} T %Q#pp
50 that

np = (h#,, oy T {Pup} hu“) T E'Qap .

Changmg the notation slightly, using i»p to denote
covariant differentiation using christoftel symbols
(i.e., covariant differentiation using Fock-Ivanenko
coefficients constructed only from the first term on
the right-hand side of the above expression), we
can write

L= I} (J?#‘f’ig — '51;“!”4’) +
The field equations become
Q= ?ﬂ‘llrl.u. + ’&Q#ppﬁifﬁp‘pﬁ?u S

} QP Gy,

k - .
g Zuopte!Plrge
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That 1s, In the presence of gravitation the massless
Dirac equation 1S expected to take the form

Y + (3K(8) ¥Tv . ygvsh = 0.
It 1s remarkable that this has precisely the same
form as the nonlinear spinor equation suggested
by Heisenberg as the basis of his unified theory
of elementary particles®. 3x/8 is Heisenberg's

lg* (thus I, ~ 3 X 10~®cm).
For a vector ficld (omitting the mass term),

S e g hgﬂrgpﬂrf‘upfrd‘
where

f;.w = ﬂ#;’p — Aw,u.
pasee ﬁg.ph‘ua — Aﬂ.#hﬂp _l_ Aﬂ (A#ﬂp - Apu“)-

From the terms containing spin coefficienis it is
easy to pick out the spin tensor
Dprp = Fupdv — FupA

This is exactly the form of the spin tensor for
clectromagnetism deduced from the application of
No-ﬂthers theorem in special relativity. However,
this 1s not satisfactory, since the tensor fy, cON-
structed here js not charge invariant. Thus in
such a theory charge would not be conserved. The
only way- to _retain charge conservation seems to
be to construct the f in the Lagrangian from
ordmary derwatwes, 111 the usual way. But this
gives a*'26Td  spin tensor for the spin-1 Maxwell
fiald. Thus we? have an unresolved anomaly when
we try to formulate electromagnetism 1n  the
generalised “theory,

The major unsolved pmblem in any theory which
treats the' Lorentz transformations as tetrad rotations
rather than as coordinate transformations lies in the
fact that we lose the fundamentally important Poin-
caré group (Inhomogeneous lorentz group). -The
invariance group of the above gencralised theory is

“Unsolved Problems” in Quark Mode! and Hadron Spectra
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a direct. product of the (space-time dependent)
homogeneous Lorentz group and the general co-

ordinate transformation group. The invariance
group of special relativity is the semi-direct product
of the Lorentz group and the abelian translation.
group. Thus-it is difficult to see how such a
theory can be reconciled with special relativity—e
how the Poincaré—invariant formulation of particle
physics can be regarded in some sense as a limiting
case of a curved spacetime theory with a tetrad
field.

Perhaps the most remarkable aspect of the
generalised theory of Sciama is that the h #, which
is an aspect of the reference system, has been
treated as a dynamical field. Nevertheless, no
restriction on the tetrad is implied by this procedure
(this is to be contrasted with the work of Moller,
in which only tetrad fields satisfying a set of dif-
ferential equations are admissible reference
systéms) The sharp distinction between the
physics and the system of reference used to facilitate
the description of the physics has been abandoned.
This is true to a lesser extent in conventional
general relativity : The physical fields g up CoOntam
lnformatlon about the coordinate system as well
as information about the geometry, and the two
Kinds of information are quite incapable of separa-
tion in any given set of ten functions g ,.
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