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Abstract 

The structure of the conformal group is studied by a generalisation of quatemion methods 
to six dimensions. Some simple S0(4,2) covariant equations are shown to correspond to 
the Kemmer formulation for pseudoscalar and vector mesons, and the matrix elements of 
the irreducible representations of the Kemmer algebra are expressed as traces of products 
of Dirac matrices. 

1. Introduction 

There has been a recent renewed interest in the conformal group (Mack 
& Salam, 1969; Barut, 1968) and the de-Sitter group (Bakri, 1969; Bakri et 
aL, 1970) for the formulation of physical theories. We shall study the 
structure of  the spinor representations of the group S0(4, 2) by means of  
the algebraic methods introduced in a previous paper (Lord, 1971), and 
construct simple SO(4,2) covariant equations which correspond, in a 
Minkowzki subspace, to the Dirac equation for the electron and the Kemmer 
equations for scalar and vector mesons (Kemmer, 1939, 1943). This leads to 
an expression for the matrix elements of the irreducible representations of  
the four- and five-dimensional Kemmer algebras as traces of  products of  
Dirac matrices. 

Let 0~v (/z = 1 . . . .  4) be a four-dimensional irreducible representation of 
the generators of the Dirac algebra 

~(u av) = _gU~ (1.1) 

where gU~ is the diagonal flat-space metric (+++--) used to raise and lower 
four-fold vector indices. Here and in the following work a pair of round 
brackets enclosing an index set will denote symmetrisation, and square 
brackets will denote skew-symmetrisation. 

has unit square and anti-commutes with the eu. The 15 traceless base 
elements of Dirac's algebra are infinitesimal generators of  S0(4,2)  (ten 
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Kate, 1968). The main purpose of the present work is to display the 
properties of the algebra in a notation which will enable full use to be made 
of this fact, and to construct manifestly covariant S0(4 ,2 )  tensor and 
spinor equations. 

We define the six quantities 

~a = (i~5~v, ~5, 1) (A = 1 . . . .  6) (1.2) 

and the 'conjugated' quantities 

6 a = (-i~5~ ~', - ~ ,  1) (1.3) 

We then find 

6(A fiB) __ g a B j  ( 1 . 4 )  

where gab is the diagonal matrix (+-~ I 1 ), the metric of S0(4 ,  2) which 
will be used a s  a raising and lowering operator for the six-fold indices. 
Defining 

t7 AB = cr [A 6 BI, 6 AB : 6 TM O "BI ( 1 . 5 )  

these quantities satisfy 

[era,, ac,] = 2(g,C ~aD _ gaC ~rnO + gad ~BC _ gad crnC)t 
[6aB, 6CD] = 2(gnC sAD _ gaC 6rid + gaD 6BC gad 5BC)J (1.6) 

SO that aAB/2 and 5AB/2 are generators of representations S and • of 
S0(4 ,  2). We also have 

�89 trA -- era 5nc) = gaC CrB __ gnC tra I 
�89 6a 6a crnc) gaC 5B _ gBC 5,4) (1.7) 

which are the infinitesimal forms of the statement that, if O2 is a matrix of 
S0(4 ,2 )  and S and S its 4 • 4 matrix representations described above 
(which we shall call the 'basic' spinor representations), then 

O~S, ,Br  = ,,A, O ~ S : S  -~ = 6 A ( 1 . 8 )  

We also define 
~ABC = ~[A 5B r 6 ABC = 6 TM cr B 6 c~ (1.9) 

which satisfy the self-dual and anti-self-dual properties 

cranc = (i/6) E ABCDEF O'DE F I 

6 "~nc -(i/6) E ABCDEF 6DEFJ (1.10) 

where eaBCDEF is the completely skew-symmetric SO(4,2) tensor with 
E123456 = 1. The general theory for N dimensions, in which the above 
relations relate to the special case N = 6, are given in previous work (Lord, 
1971). The following relations will also be found useful. To save space they 
are stated without proof, but are easily verified. By expressing them in 
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terms of Dirae matrices by (1.2) and (1.3) we obtain well-known relations 
for the Dirac algebra. 

{O'AB, aCD) = crAB o;CD + o.CD lAB = iEABCDEF fiEF "~- 2(gBC g A~ _ gaC g~O)~, 
{ S a s s e D } _  i ,  ABCDnV SnV + 2(gBC gAD__ gAC gBD ) I(1.11) 

f a  5ncD = (i/2) E AnCDEF O'Er -~ gAB O'CD .q_ gAC O'DB _~ gad o~C I 
5,4 O'BCD = --(i/2) E ABCDEF 5nF -~ 3g atn 5 c  m �9 (1.12) 

AB 1 - ~ A �88 trace lab fCD = --23rCD], ~- trace 0 "4 f s  39 
1 A B C -  �9 aBc anc } (1.13) �88 trace fa  5BCD 0, N trace f fDnv = teDzv -- 63tDEV ~ 

�88 trace O'an = �88 trace 5 an = 0 ) 
5A O.BC = 5ABC + gAn 5C __ gAC ~13 I 

O'nc aA o~Ca + gaC cr B gAB aC J (1.14) 

2. Abstract Formulation 

It should be noted that the relations we have obtained, could be 
regarded as the basis for a theory of generalised quaternions without 
reference to the particular four-dimensional representations (1.2). 
Hamilton's quaternions in fact were formulated as an abstract algebra 
before the two-dimensional irreducible representations (Pauli matrices) 
were known. In this context 

aa = (%, 1) (a = 1 . . . .  5)/ 
(2.1) 

5A = (--fa,  1) / 
together with (1.4) are defining relations for the algebra. We can distinguish 
four distinct types of general element of  the algebra (this is so also in 
Hamilton's quaternions, but this has been obscured by the fact that the 
algebra was evolved to deal with three dimensions, in which the distinction 
between a vector and a rank two skew-symmetric tensor is obscured). This 
has led to a certain amount of confusion in the literature in the applications 
of  quaternions to four-dimensional problems (special relativity). For a 
discussion of  the nature of the difficulties involved, the reader is referred to 
the work of Ellis (1966). 

We can expand a general element of  the algebra in any of four ways: 

(a) 3 = ~:a fA + (I/12)~:aBC faBC] 
(b) 3 =  ~a5 a + (1/12) ~aBCSa"c~ 
(c) ~ = ~: + (1/2) ~_an ~ra" [ (2.2) 

(d) E = ~ + (1/2) ~A. o A" ) 

The factor (1/12) in (a) and (b) is inserted because in the summation each 
term occurs 12 times. 

~aBe is a self-dual tensor and ~aBC is anti-self-dual. Under an inversion in 
the five space perpendicular to a 6 we have ~a ~ ~a, ~aBC ~ ~anc, ~an ~ ;~an. 
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The tensors of various ranks are the generalisations of  Hamilton's 'scalar' 
and 'vector' part of a quaternion. Using Hamilton's notation we may 
write t = $ 3  for the scalar part. In the abstract approach to generalised 
quaternions the operator S takes the place of �88 trace in (1.13). It is our aim 
to use the algebra to deal with rotations in six-dimensions, as an extension 
of the quaternion methods of special relativity (Rastall, 1964). When this 
is done we are no longer free to decompose S in any one of the four ways 
(2.2), since each particular way will correspond to a different transformation 
law for S (equation (1.8) should clarify this statement). 

3. The Adjoint Spinor and the Charge-Conjugation Matrix 

It easily follows, from the analogous well-known results for the matrices 
c~, that there exists a matrix 13 with the following properties: 

13 = 13, = 13-1 (3.1) 

13gA/3 = (OA)t / (3.2) 
13~a13 (~a)tj 

so that 
130.AB 13 = _((taB)t, 138aB 13 = _(jAB)t (3.3) 

which is the infinitesimal form of 

13S13 = (St) - ' ,  or S* 13 = 13S-' (3.4) 

This shows that if ~b is a 'basic spinor' of S0(4, 2) (transforming to S~b under 
the SO(4,2) rotation O]), then r = ~ transforms to q~S -~ so that ~r  is 
invariant. Since/3 has two eigenvalues +1 and two eigenvalues -1 ,  this just 
corresponds to the well-known fact that the universal covering group of  
so(4,2) is su(2,2). 

The equations 
s13s, = 13, s - '  13(s,)-~ = 13~ 
s t  13s = 13, ( s b  -113s -~ 

S13S* = 13, g-~ 13(g*)-' 
~+ ~ g  = 13, (g+)-i 13g-, 

(3.5) 

which are obtained from (3.3) and (3.4) can be regarded as alternative 
S0(4, 2) transformation laws of t3 under which it remains invariant. 

A particular consequence of (3.4) is that the matrices craBfl are all 
Hermitian. Any (4 x 4) Hermitian matrix can therefore be written 

= (t + �89 ~aB) 13 I (3.6) 
t = �88 trace E13, tab = -�88 trace 313craBJ 

where the coefficients t and tab are real. Moreover, if 3 is assigned the 
transformation law 3 ~ $3S* it is easily proved, from (1.8) and the first 
equation (3.0, that t is an invariant and tab transforms as a tensor. 
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Another matrix of importance is the charge-conjugation matrix C 
(Corson, 1954) for the ~ '  matrices. It satisfies 

C = - C  r = - C  -1 (3.7) 

Ca a C = -(aa)  r, C~ a C = _(Oa)r (3.8) 

This gives 
C ~  aB C = (~A~)r  

which is the infinitesimal form of 

C S  - t  = S r C 

Thus if ~b and X are two basic spinors, 
respectively, then 

xrC~ 

(3.9) 

(3.10) 

transforming to S~b and •X 

(3.11) 

is an SO(4, 2) invariant. It is a simplectic form in the components of~b and X. 
We have in (3.11) a six-dimensional analogue of the property of two- 
component spinor representations ~ and ~ of the Lorentz group, that 
~l ~2 - ~2 ~1 is invariant. 

A consequence of (3.8) is that the matrices 

a A C are all skew-symmetric / (3.12) 
~a~c C are all symmetric J 

So that a skew-symmetric 4 • 4 matrix can be written 

3 = �89 era C; ~a = -�88 trace 3C~a (3.13) 

and a symmetric 4 • 4 matrix can be written 

,-~ = 1-~(aBc craBC C; ~aBC = �88 trace 3CraBC (3.14) 

Moreover, if these ~ are assigned the transformation law ~ ---> S S S  r then 
the components (3.13) transform as a six-vector and those of (3.14) as a 
(self-dual) skew-symmetric tensor of rank 3. For completeness, we list for 
as we did for B, the different S0(4 ,  2) transformation laws for C that will 
leave its components invariant. 

S C S  T :  

S T C S  = G 

S C S  r =  G 
s T c ~  = ' i} 

(Sr)-1 CS-I  
(S) -~ c ( s T )  -~ 

(Sr)-l C~r 
(3.15) 

4. Spinor Indices 

So far we have got by without writing spinor indices explicitly, by using a 
matrix notation. We now introduce different kinds of indices for different 
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transformation laws, as in the two-component spinor algebra of  the 
Lorentz group. 

(a) ~b~ indicates the transformation law ~b ~ S~b 
(b) ~b ~ indicates the transformation law ~b -+ ~bS -I = (S-l)r~b~ (4.1) 
(c) X~ indicates the transformation law X -+ X s-Z = (•-1)r X|  
(d) X ~ indicates the transformation law X ---> SX = X ~ r  ) 

In addition we will use dotted indices when S is replaced by its complex 
conjugate in (4.1). A barred and dotted index, for notational simplicity, can 
be written as a primed index. Thus, for example 

X ~' ~ X~'(S*)~; (4.2) 

The assignments of indices to the various matrices we have defined follows 
immediately from our previous discussion. Thus we have 

cr#~, ~ #  (4.3) 

to comply with (1.8), and from (3.5) the matrix/~ can be assigned indices in 
any one of the following ways 

/3~, fl~/3, / 3~/~, / 3~,/3~/~, etc. (4.4) 

and from (3.5) the possible assignments for C are 

C~ #, Ca~, C~ ,  C~/~, C~. ~ etc. (4.5) 

All the formalism we have now evolved has achieved the following simple 
prescription for constructing manifestly-covariant SO(4,2) spinor 
equations. We simply adhere to the rule that summation over a pair of  
indices can be carried out only if the two indices are of  the same type, one as 
a subscript and one as a superscript. 

Note that, although there is no raising and lowering operator for spinor 
indices of  S0(4, 2), we can use/3 and C to convert an index from one kind to 
another, for instance, given ~b~, we can define 

C,,~ ~b~ = ~b~, ~b/3 C/3~ = ~b~ (4.6) 

Note that care must be taken to achieve consistency when C is used in this 
way, on account of its skew-symmetry. 

A raising and lowering operator does exist for skew-symmetric pairs of 
spinor indices. This is the completely skew spinor e,,ge~ (E1234 = 1). Its 
invariance is a consequence of  the unimodularity orS. We use C to define the 
following sets of skew-symmetric matrices: 

~ C,, O~al~j (4.7) 

(Note that if we are explicitly writing in the spinor indices, the bar on ~ can 
be omitted without ambiguity). We then have the curious S0(4, 2) identity 

cry/3 = � 8 9  a a ~  (4.8) 
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Further relations, which follow from the symmetry of a~a~ c, the skew- 
symmetry of a~# and the traceless property of aan ~ (in their spinor indices), 
the fact that either cr a, aanc or 1, a an give complete linearly independent 
bases for the expansion of any 4 • 4 matrix, are the following: 

~ ,,an y _ r - 435 3~) (4.9) 

1 ~ ABC ~ [ ~  ~ # .  ~ # ~  (4.10) "~(YABC (Y~ ~ --z.ku ~ o~ T o~ o )  

o'.,]./~ aCn = 2(3~ 3r~ - ~, S{) (4.11) 

5. Covariant Equations 

Given a six-vector Pa, we can define from it a rank 2 spinor 

-P = Pa ~a (5.1) 

The simple S 0 ( 4 ,  2) invariant equation 

p r  = 0 ( 5 . 2 )  

can be constructed from the vector and a basic spinor r Multiplying by 
P = p a a  a and using (1.4) we have 

(pap a) r = 0 (5.3) 

Equation (5.2) can be regarded as an analogue in six-dimensions of the 
Weyl equation for a massless spin-half particle. In the particular frame in 
which P6 = 0, the equation (5.2) takes on the form of a Dirac equation if 
Pu (/* = 1,... 4) are identified as momenta andp5 = m as mass. We have just 

p ,  ~ '  ~b - m~b = 0 

and (5.3) becomes the energy-momentum-mass relation 

pup  ~ = rn 2 

The other equations we shall study will be analogues of other massless 
theories and will reduce forp6 = 0 to meson equations. Salam et al. (1965) 
have used a similar SU(2, 2) [equivalently S0(4 ,  2)] formalism to attain a 
generalisation of the Bargmann-Wigner equations (Bargmann et al., 1946); 
in these equations only the wave functions possess an SO(4,2) transfor- 
mation law, the equations themselves do not. The three equations we shall 
study are 

(a) p~ t3 ~#~, = 0, ~t37 + 3#~, = 0 (5.4) 

( b )  = o ,  - = 0 ( 5 . 5 )  

(c) P ~ g ~  = 0, E~ = 0 (5.6) 

The three 'wave functions' are irreducible under SO(4,2) and have re- 
spectively 6, 10 and 15 components. They correspond respectively to a 
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an anti-self-dual rank three-skew tensor and a rank two-skew 
tensor, respectively: 

(a) 3 = ~a aa, ~a = �88 trace j_~(~A (5.7) 

(b) 3 = (1/12) ~a,c ~ ~ABC = _�88 trace 36  A"c (5.8) 

(c) E = �89 aa", ~AB = _1 trace Ea a" (5.9) 

In terms of the tensors, the equations (5.4-5.6) become 

(a) PA ~a = O, Pta ~ = 0 

(b) PA ~A~C = 0, Pta ~:ncm : 0 

(c) PA ~An ~_. O, PrA ~1~C21 = 0 

(5.10) 
(5.11) 
(5.12) 

Because of the anti-self-dual property of ~AnC, the two equations (b) are 
actually the same equation. 

We now make the specialisafion P6 = 0 ,  P5 = m and split the tensors as 
follows: 

(a) ~:A = ( ~ ,  ~5, ~6) (5.13) 
__ 1 �9 vp~t 

(b) Xu = ~:~56 - --'~t%vpa~ t (5.14) 1 �9 p~5 
X~v ~tzv6 = ~l'#vpA ~ ] 

(C) X#v = ~uv, X.u = ~/z5, ~,u = ~#6, ~5 = ~56 (5.15) 

The equations (5.10) become the pseudoscalar meson equations 

Pu ~u = mes] 

p ,  ~:, ~ O~,J (5.16) 
~6 

The equations (5.11) become the vector meson equations 

P~X ~" = mx ~, P~,X~ -P~X~ = -mxt,~ (5.17) 

p~ X ~ = 0, Pt~ X~p~ = 0 (5.18) 

and equation (5.12) gives the full set (5.16-5.18) (but of course without the 
trivial equation ~6 = 0 absent). 

6. The Kemmer Algebra 

The above analysis indicates a profound relationship between the algebra 
of Kemmer matrices (Kemmer, 1939, 1943) and the algebra of S0(4, 2). The 
specialisation to the (12346) subspace implicit in the restriction p~ = m 
makes cr 5 = o~ 5 into an invariant; we have, for  this subgroup, a raising and 
lowering operator for spinor indices, ~5 C. This corresponds to the fact that 
the basic spinor representations S and ~ are equivalent on the S0(4,1)  
subgroup. Defining 

T,~, = ,5 a~, Oz = 1, . . .  4, 6) (6.1) 
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(so that F u = au (/~ = 1,...4) and 1,6= as). Equations (5.4-5.6) can be 
rewritten (without the P6 = 0 restriction). 

(a, b) p~/ '~ ~ 3 ~  + m 3 ~  = 0 (6.2) 

(c) ~'t,n/'~'~E~'~, ~+  mE~ = 0  (6.3) 

Using the raising operator on the index y of (6.2) we see immediately why 
equation (5.6), specialised to the subgroup, gave the same equations as 
(5.4) and (5.5). 

Defining 
B(oB 6a _F, a n = 1234,6)] a = �88 trace (tz 

o(10)-Ev -�88 trace 6aBe Fu aO~V I (6.4) tl ABC 
B ( 1 5 ) C D  .~B ~ trace a AB-FI~ a cD 

we can write (a), (b) and (c) above as 

(a) . .B(6)  B~ - - ^ ) r tL a SB -t- m ~ a  = 0 
1 ,,u n O 0 ) o ~ F  ~ • m e  = 0 j  (6 .5)  (b) Y ' ~ e  -obl ABe  SDEF T .'tt'SABC 

1,,t~B(15)CD~ rn~A n = 0 (e) ~e , a B s c ,  + 

If we regard the anti-self-dual or self-dual index set A B C  as a single 10-fold 
index and the skew-symmetric pair as a single 15-fold index then B(u ~ 
B~ l~ and B~ 15) are sets of five matrices of dimension 6, 10 and 15. Making 
use of  (4.9-4.11) and (6.4), by tedious calculation, we can verify that they 
satisfy the defining relations 

B ~ B ~ B  o + B P B " B  ~ = g~'~B o + gm'BU (6.6) 

of the five-dimensional Kemmer algebra. The commutators of  pairs of  
these matrices are found to be 

(6) [BU, U~ln-I.,, JA----41 trace ~a ~"~ a B ] 
(10) t'-'r"", ~,"~ID~JaBC---- --~1 trace 6A~c ~"~ O'~ (6.7) 
(15) [B~', "~w"-~' JaB----~1 trace aAvcr~'~ a co J 

(/~, v = 12346) 

If  we convert the tensor indices A, ABC,  A B  in (6.7) to pairs of  spinor 
indices aft (skew), aft (symmetric) and ~ (traeeless) by an obvious pre- 
scription, the right-hand sides of (6.7) become, when operating on a rank 
two spinor that is respectively skew-symmetric, symmetric and traceless, 
just a multiple of the generators of S0(4 ,1 )  in a 'fusion' representation (the 
proof involves the use of  (4.9-4.11)): 

a~'"|174 "~ 

The irreducibility of the matrices [Bu, B~] then follows from the irreduci- 
bility of the %~ in all three cases. Hence also the sets of five matrices B~, are 
irreducible in all three cases. The constructions (6.4) are therefore expres- 
sions for the matrix elements of irreducible representations of  the five- 
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dimensional Kemmer  algebra as traces products  o f  Dirac matrices. 
Equat ions (6.5) are five-dimensional Kemmer  equations, which, as we have 
seen, become the usual four-dimensional meson equations on settingp6 = 0. 
The matrix set B~ 6) 0z = 1 . . . .  4) is the direct sum of  the one- and five- 
dimensional representations o f  the Kemmer  algebra, B~ ~~ is the ten- 
dimensional representation and B~ ~s) is the direct sum of  the five and the 
ten-dimensional representation. 
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