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Abstract. The free field equations for particles with spin are invariant under a group
SL(2.¢) whose transformations correspond to changes of representation of the two-
component spinor algebra. The generalization of the equations which extends this
invariance to a guage invariance in the Yang—-Mills sense necessitates the introduetion
of auxiliary fields (which are also necessary to maintain Lorentz covariance). These
fields can be interpreted as the potentials of a spin-2 field, just as the auxiliary fields
for the charge gauge group are the potentials of a spin-1 field (electromagnetism); this
spin-2 field is then self-interacting. The Bargmann-Wigner formulation of the linear
spin-2 ficld, when modified by the proposed self-interaction, vields a non-linear theory
of a spin-2 field which is shown to be identical with Einstein’s gravitational theory.
With this interpretation the auxiliary fields take on an extra role of Yang-Mills field
for the general coordinate transformation group-that is, they are the components
of the affine connexion.

L. Introduction. Einstein’s special theory of relativity (Lorentz covariance) has
played a dominant part in the development of elementary particle physics. One of
the most profound expressions of the requirement that physics should be consistent
with special relativity is contained in the work of Bargmann and Wigner(1) where the
idea that the state vector of a non-interacting particle should belong to an irreducible
representation of the Poincaré group (inhomogeneous Lorentz group) is shown to
lead a elassification of all possible Lorentz covariant field equations for non-interacting
particles; cach equation is characterized by a unique spin s and restmass m. There
are many formulations of these equations in the literature (1-7), all of which are
equivalent. In this introduction we shall give a brief discussion of the free-field equa-
tions and set out the algebraic structures and notational conventions that we shall
use in later seetions.

Let a# (7= 0,1,2,3) be a Euclidean coordinate system in a Minkowski (flat) space-
time with metricy,, (1 = 949 = =4y = = Yae = — y3), and write ¢, for é/éx#. The metric
and its inverse % are used to lower and raise indices in the usual way. In order to
discuss the two-component spinor representations of the homogen‘cous Lorentz
group (8) we introduce the following 2 x 2 matrices:

gt = (1,0); o= (1, -aq),

°=h[)(f”l('_d’f%_.ﬂ; it

a3
s
L)
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The four matrices o are the basis of the Pauli algebra, or equivalently, of a two-
dimensional representation of the quaternion algebra (9, 10). The notation & is based
on the idea of quaternion conjugation (9, 11). We find that the following relations hold:

o+ = —eoTe, (1-2)

Moror+o7TF) = 9. (1-3)

If we define o = YoiT — a'TH), (1-4)
then [o#, 677] = 2(Taed — Yoo P? + PEPgT — )PaF), (1-5)

which shows that # are generators of a representation of the homogeneous Lorentz
group. Defining the ‘dual’ of a skew-symmetric tensor f,, by

f.rz_l' L %fe_m';ﬂfﬁy-' [ 1 'U)

where ¢, . is completely skew-symmetric with €455 = 1, then o, is found to be “selt-
dual’ o
G-;ril:gp_i" I:l"}

Given a Lorentz transformation A * (A ,#A,79,, = 9,4), its two-component spimor

representation (1, 0) is given by SL(2.¢) matrix L that satisfies
"\T#LO‘ULT = G-'"- t E‘q}

By considering the infinitesimal Lorentz matrix A7 =87 +9"#A,, (A, =—4,, in-
finitesimal) we find L = 1+ }A,, 0% so that the infinitesimal generators of the represen-
tation (1, 0) are just }ov*. (The matrix — L is also a solution but we shall not concern
ourselves here with the two-to-one nature of spinor representations.) A two-component
spinor (Weyl spinor) is a quantity ¢ which transforms to L¢ under the Lorentz
transformation A 7. The representation (0, ) is given by two-component quantities
y that transform to (L')~!y. The two representations are not equivalent. A Dirac
spinor is a four-component quantity belonging to the representation (4,0)@(3,0).
In the Weyl representation of the algebra of four-component spinors the decomposition
into a direct sum is explicit —the 4 x 4 transformation matrices are in block-diagonal
form so that the Dirae spinors have the form

()

We shall write the fourfold spinor indices as capital Latin letters, thus: ¢ .
The Weyl representation of the * Dirae matrices’ is given by

) r I : -
which, by the quaternion relations already discussed, are readily seen to satisfy
Hysy + 77 = 9, (1=
~pliesd _!_-:r,-'.--;;_-'r = 0, (1-11)
(¥9)% = 1, (1-12)
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V==Y = — e Y YY, (1-13)

CyrC1 = — 94T where € = (f" _&)' (1-14)

The matrix € is the ‘charge conjugation matrix’ in the Weyl representation. The
advantage of the Weyl representation lies in the way in which it renders the relations
between the two-component and four-component notation particularly transparent.

Defining Y = Yy — i) (1-15)

it is clear from the fact that, in the Weyl representation,

oy L
'}""’ r— T
—gmt]?

that 4y are the generators of the four-dimensional representation of the Lorentz
group given by the Dirac spinors: the 4 x 4 spinor transformation matrix L is given
in terms of the 2 x 2 matrix L by

b= (L tL'rl)

and it satisfies ALy Lt = o, (1-16)
I'rom the self-duality of o we obtain the property
?5?;&' = '}’yu}’5 = ?}Tv* ': I-1 TJ

We have now sufficient formalism to write down the Bargmann-Wigner formulation
of the free-field equations for spin s and restmass m (which we will refer to as the BW
theory of spin s and restmass m). For s > 0 the equations are expressed in terms of a
complelely symmetric Dirac spinor of rank 2s (s = 1,1,8,...):

VY By = M. (1-18)
When m is zero there is an additional restriction
.},551 E{rﬁ_‘f:..._;lu = ll'ff.'h,...'l:" (]“ 1 9)

which indicates that for massless fields the theory can be formulated in terms of a
completely symmetric Weyl spinor of rank 2s. For spin zero we have a special case.
It is possible to express the equation for a massive spin-zero particle in the above
general scheme as an equation of the same form as the spin-1 equation

(Y58, en = my,p)
but with a skew-symmetrie instead of a symmetric spinor: the massless spin-zero
equation [J¢) = 0 does not fit into the scheme, but there seems to he no such field in
nature anyway.
On account of the relation (1:16) the free field equations are readily seen to be
invariant under the homogencous Lorentz group:
Vityiiitas = LfHLf{ﬁ Va,...o1,

-'J.dl — '}ﬂ‘. I: I‘E"}
d, > (A1) 19,
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Another invariance group is the group of changes of representation of the Dirac
matrices:

i1 Wi
5 L S.i:"”'b_-l:: VE,...Byy
- _1
Ya == Y8,

1-21
Yo 7,87, J Sl

} 7
Oy = 0Oy,

where § can be any 4 x 4 matrix, so that the invariance group is SL(4, ¢). We shall he
concerned only with an SL(2, ¢) subgroup of this SL(4, ¢}, which in section 4 we shall
treat asa gauge groupin the Yang-Mills sense. This is the group of change of representa-
tion of the Pauli algebra

of - SorS', =8¢, y—(SH1ly. (1-22)

where S is a unimodular 2 x 2 matrix. The four matrices o# can now no longer be
considered to have the special form given by (1-1) but can be any linearly independent
set of four Hermitian 2 x 2 matrices. The relation 7 = — eo#T¢ is retained and is now
considered to be the definition of @#, which, on account of the property of ¢ that
eS = (8T)~1¢ for any unimodular 2 x 2 matrix S, have the transformation law

& — (S 1F#S-1, (1-23)
All the properties that we have discussed are unaltered by this generalization. We
shall continue to define the Weyl representation of y# by (1-9) but where ¢/ can be any
four linearly independent Hermitian matrices. The Dirac matrices in (1-18) are now
supposed to be restricted to the generalized Weyl representation so that the invariance
group (1-21) has a 4 x 4 matrix S restricted to the form

(8
8 = ( :

S‘}—l:)

with the 2 % 2 matrix S unimodular, and 7, is invariant. The infinitesimal generators
of this 4 » 4 matrix S can be taken to be }v*, but it should be borne in mind that these
matrices change under the group transformations, so that it would be better to use
a fired representation of the Dirac algebra for these matrices, with a different kind of
index.

A fundamental difficulty arising from the massive free-field equations is concerned
with the introduction of a minimal electromagnetic interaction, in that the various
equivalent formulations of these equations do not remain equivalent when @, is
replaced throughout by the non-commuting operators D, = &, —icA . In fact, if we
write down the 25 equations obtained from (1-18) by permuting the indices on the
left-hand side (making use of the symmetry of these indices on the right-hand side,
or for spin zero the skew-symmetry) and replace &, by D, in all of them, the set of

equations obtained imply T
Efw?ﬂ:!'?v!’.-': !Il’r.fil...“’;, = “Jl

. . (1-24)

Jr;.w = ﬂ;lAy_ﬁvAp' I
Such a relationship is not consistent with a sensible physical interpretation, since it
describes a geometrical relationship between the components of the electromagnetic
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field and those of the spin-s field, independently of the strength of the coupling. The
spin-} theory is free of this defect as are the zero mass theories (though zero mass
ficlds are not coupled to the electromagnetic field in any case). This difficulty is
important in the present work because we shall be dealing with another minimal
interaction, with more general non-commuting operators D,. We shall overcome the
difficulty simply by supposing that the minimal interactions are not to be applied
to the massive BW theory with spin s, but to the equation obtained by forming the
sum of the equation obtained by permuting the indices in (1-18). For spin 0 or 1 we

hav 3 .
et $(»*4D, Vep+ 75D,V a5) = miy4p (1-25)

with ¥, symmetric for spin 1, skew-symmetric for spin 0. In the absence of the
minimal interaction (D, = @,) equation (1-25) implies (1-18) so in this case the theory
described by (1-25) is equivalent to the BW theory (this circumstance follows from
the identity (y*@1—1®@7") (7 @1+ 1@7*)8, d, = 0. Equation (1-25) is in fact just
the Kemmer formulation (3) of the free vector and pseudoscalar meson fields). For
spin § and higher, however, the theory of massive fields that we are proposing is less
restrictive than the BW theory: some additional restrictions would have to be form-
ulated. The equations formed from the sum of Bargmann-Wigner equations in the
manner indicated above have been studied by Kramers, Belinfante and Lubanski(12)
and by Green(13). We finally note that for zero restmass the equations

Y {nE B b | =
})ﬂ{?! Ay ]Ip.E.:fn-.u']w*—?ﬁ:f: }'rf_.;lj'-,'___{:, L .”!'FAH;&AP"E] - D:} ( l'.Jﬁ)
E = h
Tﬁdlw}s‘d:-n—{h - ?'&"11"""""
imply the BW equation 'J"qfi‘l D, ]r'{rf':'+-l=----‘1=s =
on account of the relation y,y; = — 5y, and the symmetry of Yy

2. The massless Bargmann—Wigner equations. When m = 0 and s = { the system of
equations (1-18) and (1-19) are just the Majorana formulation of the neutrino field(14).
Whenm = 0, s = 1 we have Maxwell’s equations. To see this we note that a symmetric
matrix y,, satisfying ys5vrp; = ¥y can be expressed as a linear combination of
(Ve + V) €. Thus we have

Van = 8"V C N Yo =— 3Cy, )48 v g, (2-1)

where the complex tensor i is self-dual. The equation 7@, ¥Ep = 0 expressed in

terms of this tensor is just Y (2:2)
jw

Separating i, into its real and imaginary parts, Ve = [+ S, equation (2-2) gives

the Maxwell equations in their familiar form

E,-ﬂj:”" = 1), (2.3)
éif‘r:f,rmj = a_ufpﬂ‘ + apfa’;.' + t:jﬂ._f‘"ﬂ - 0' (24)

In the presence of charged matter only the first of these equations is modified

lt:’]'Iw.n"._,irl- = P:ji' ( 2 = ﬁ;l
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but (2-4) remains the same (non-existence of magnetic monopoles), so that for either
the non-interacting or the interacting electromagnetic field (2:-4) implies the existence
of a set of *potentials’ 4 such that

fpr = Bp“lvuer‘djl' [26]

In the spin-2 case the equations corresponding to (2:3) and (2-4) are essentially the
same equation, so that they must both be modified in the presence of interaction and
there is difficulty in defining potentials for the interacting spin-2 field, as we shall see.
A completely symmetric rank 4 spinor e p satisfying v €V ppop = Vapop can be
expressed in terms of a rank 4 tensor i/, . analogous to the spin one Vo

Vasep = W pupe(PPC71) 45 (v C_I)CD!} (2-7)
YV vpr = T6¥ anon(CY )18 {C7)PP
The following properties of the tensor i uwpe are Teadily apparent:
if{r.rrrpf — ]“f'-w;u' = _’l'&-.ul' Tt (2-8)
Vo =V mpe=Vwis=Vm (2:9)

Also, from the property (1-19) we can show that V jupe MUst be traceless in the sense
that %, . = 9*y . » = 0. On account of the skew-symmetry of C, the contraction of
the second equation (2-7) can be written as

“:‘&'uvpp == i%wiﬂﬂﬂ[c},#}'p]i& (G}’ﬂ -‘.,p}C.'D (3'1(}}

and on account of the symmetry of i apep and (1-19), ¥ .. can be written in the

f
o Vasep = Wi, C ) pe (2-11)

which, when substituted into (2-10) gives

Vson = 3V ADlCY Y V00V, 7, AP (2-12)
which vanishes on account of the identity y#y,,v, = 0. Thus
yﬁ-ﬂ_w = 0. (2-13)
By virtue of (2:9) this traceless property can be re-expressed as a cyclic symmetry
Vippe = Vst Vipuo+ Vo = 0, (2:14)

which is in fact only one restriction of the tensor components

Vorzs + Yoon + Wozpa = 0 (2-13)

since if any two of the indices in (2:14) are equal it reduces to one of the properties
(2-8). That (2-8), (29) and (2-14) are all the symmetries of i, that follow from the
symmetry of iy pep and the property (1:19) can be seen by noting that since a self
dual rank 2 tensor has only 3 components, the number of components of a rank 4
tensor satisfying (2-8) and (2-9) is the same as that of a symmetric 3 » 3 matrix, i.e,
6 components. The restriction (2-15) then reduces the number of linearly independent
components to 5, which corresponds to the number of com ponents of i ,,,.,, which is
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equivalent to a completely symmetric Weyl spinor of rank 4 (a completely symmetric
quantity of rank 4 in fwo dimensions - see the remark following (1-19)).

d [ equation > .
['he BW equ yi ",dffﬁncm =0 (2:16)
can now be re-expressed in terms of the tensor. It gives just

aﬂ:wyvpa = 0. (2-17)

We now introduce a real tensor 4 ,,,, which corresponds to the f w I the spin-1 case.
We note that any complex tensor with the symmetries (2:9) and (2-10) can be expressed
in terms of a real tensor 4 , _ according to

v per

l;lr;:l-pa' = é{.A;;ppg+A;ﬁ.;E)+%(Aﬁpa.'i'-a#rjﬁ} {2‘!8}

where A=Ay ™ ¥ (2-19)

The traceless property of ¢, ., implies a similar property A, and of A5, so
hat 4, tisfies

tha e per satls ‘4#"#!* - 0’ (2,2(]:'

Ai’,m-p:ln' = 0. ':22”

But now (2:19), (2-20) and (2-21) imply
A+ A

o =

,,rn';u:r; (2‘22‘
for instance,

A1 = — Ayygp = — Agy 31— Aygay, (from the traceless property).
-4

also 030 = A 1910+ A220;

Aypre=—=Ayg13+ A3
= — Ayg Agy + Ay

Hence A1z = 3(A 010+ Asgog— Anyzy — Ags s2) = Ay3,,. The other components of (2-22)
can be proved in a similar manner. We can now write the complex tensor V' uwpr MOTE

simply as
P : w;w,mr = A;.-vpsr'l'AﬁTPg-- {223}

The number of components of a tensor satisfying(2-19) is 21 (symmetric 6 x 6 matrix).
The traceless property (2:20) is a set of 10 restrictions and the oyclie symmetry (2-21)
is one restriction, so that 4, . has 10 linearly independent components which corre-
spond to the 5 complex components of r,, .. The set of restrictions on A jvpe TUSE
therefore be complete. Expressing the spin-2 equation ( 2:17) now in terms of the real

tensor we have
31“:'1;“';.!0 = U:

A5 e = 0, (2:25)

i por
which are entirely analogous to the spin-1 equations (2:3) and (2+4), except that, due
to (2-22), the cquations (2-24), (2:25) are not distinet but simply two ways of writing
the same equation.

We now wish to introduce potentials for the BW spin-2 field, the analogues of

equation (2-6), Writing (2-25) as
';’]f'u "‘]J'p]unl =0
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we see that 4, ,,, can be obtained from a tensor 4 ,,, = 4,
Apper = 8,4 53— 0, 4,5, (2:26)

and we investigate the properties of A, implied by the symmetries of 4, ;. The
eyclic symmetry 4, = 0 leads to

F-*“-l lpela + ap‘jlful'lA +* ad"'lh-pla’l =0, ':n".‘-';l

=4

where Aipein = 4

opd

Equation (2-27) implies that 4, can be obtained from a set of ‘secondary potentials’
A, 1
" '4'1;!0].! = ﬁp‘dal = E!ﬂ"i,cu’l' (2-28)
We now note that the potentials 4, are not uniquely specified by (2-26): the right-
hand side is unchanged if we add to 4, any quantity of the form &,a,, where a,,
is skew-symmetrie. (This is to be compared to the electromagnetic case, where (2:5)
is unchanged if we add an arbitrary gradient é,a to 4 ) If we choose ¢, to be the
skew part of }(4,,—4,,) then the new A, in (2:28) is expressed only in terms of
the symmetric part of 4_,. Thus we are at liberty to ‘fix the gauge’ so that, in (2-28),

Ay = Ay, (2-20)

In this case, the identity
"‘I‘_u,u:-a' = ’].’(Aloplp"'" "4[;:;\]|7_:.1[frﬂinl:l (2-30)
gives A e = A1 (2-31)
and hence A,,.=284,-8A4,., (2:32)
Ay =0, (2:33)
Crl o+ 0p A gr+6,4,,,=0. 2:34)

It will be convenient to define the field

Blﬂgﬂ — %(A ﬂpﬁ'+ aﬂA P”‘] } (1},351
=464, +0,4,,-0,4,,)
which in symmetric in (xo). We then have
".l,n'prr = g(aa B,n-'rp_ a_ﬂ Bvurp}' (2-36)

We now consider the equations that the secondary potentials must satis{y in order
that 4, be traceless. These are easily seen to be

DAFM_ EpaPAHP_apé;:Avp-E-aJrarA = D! (2'3?}

where A = A§ = 5p»A . These equations are precisely the linearized version of
Einstein’s gravitational equations (15). However, the conception is quite different in
that here we have an essentially linear spin-2 theory for which (2-37) are exact equations
—they are in no sense a ‘weak field approximation’. Also the space-time is flat; the
metric is 7,,. In Einstein’s treatment we would have a curved space-time with metric
Uy = 1+ €4, where € is some infinitesimal parameter. Equation (2-37) in Einstein’s
theory has extra terms of order e. The Christoffel symbols i} formed from g, are
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equal to 68,7+ 0(c?) and the Riemann tensor would be }ed,, .+ O0(e?); it is the
Riemann tensor, rather than 4, that is supposed to be exactly traceless. Both the
Reimann tensor and 4, ,, satisfy the cyclic symmetry exactly from the way they have
been constructed, and (2:25) corresponds to the Bianchi identity of the Riemann

tensor.

3. Interaction of the spin-2 field. We consider now, in a completely general way the
modification of the BW spin-2 equation in the presence of interactions. We insert a
‘current” in the right-hand side of (2:16) (equivalently (2:24) or (2:25))

&;‘A;u'po' =.ﬂupa-: {3_]}

- where j,,, is constructed in some way from the other fields and possibly (in the case
of self interaction) from the spin-2 field itself, and f is a coupling constant analogous
to e in the spin-1 theory. The tensor 4, of course still has the symmetries (2-19-22),

which imply the following properties of j,

Jupe = —Joaps (3-2)
e =0, (3-3)
Jippor = 0, (3-4)
e = 0. (3-5)

Now, since (2-25) is no longer valid, we cannot define potentials according to (2-26).
Instead, we will solve the problem of potentials in the interacting spin-2 field by
constructinga tensor 3, , from 4, ,and j, ., which will satisfy &, B, ,, = 0 and hence
will have the form ¢, 4,,,—6,4 ,,,. In order to do this we will make an assumption
about the form of the current j, .. We will assume the interaction to be such that

B;:jrpo' + ap jl'rr;: 4o E}ajv,r:p = 0. {3'6:'

If this is valid, then j, ,, has the form
jl'pl:r " apjm' o E'd‘jpr (3-7)
for some tensor j,,. The eyclic symmetry (3-4) then implies the existence of a vector j,

such that (3-8)

gl = a,u g = ar Jue

We have some freedom of choice for j,, in that j, ,, given by (3-7) is unaltered by adding

é,a, to j,,, with a, an arbitrary vector. Choosing @, = —j, we can transform away
Jies by making use of this freedom of choice. Hence (3-7) possesses a symmelric solution
j_m' =J.r;r' (3.9}

We now define the tensor

J'j_mrm- =4 o per +¢f ('Jf,up Jog — "-'vp..?_;.ru' + ?fvo'.}‘m: e "fpa-.'}:-;-) (3' 1 0)
which has the following symmetries in common with 4,

B = B;urlur . 4 B_m'a',o' (3-1 1)

v por
jjﬂb',ﬁm’l = 0. (:i-i:!)
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However. unlike A , .. it is nof traceless:
B;‘-r- = B.ragwcr = —f(?j_,u.-l- ’n’;ﬂl.ﬂr (3-13)
where j = j5 = 1% -
In terms of this new tensor B, . the basic equation (3-1) can be written

e Byupo = f 1002+ New ) = 2ol + N3] (314)
(We have made use of é#,, = &,j, which follows from j# , = 0.) We now show that
Ef,nBrp}u'l = 0 as follows:

BFW =z ‘.'l_?t*prr +Jﬁ.€,-rv:..‘l':6; J:li; T 5:1',:}

so that 6B 5 = [ 75+ J1€ 2107 ¢hjE— oz exj).

-~

y YR A8
Therefore, & Brzs = [y o —J€ oyt €praa (17784 77°)

= .ﬂjl_rv e E;ijf + &n'j,r:-]

(where we have used €., €% = — §46;8},+0£8},03)). We have therefore shown that
¢*Bgs = 0, or equivalently ¢#B; o= 104 that is,
I?TFBJ:,)M = (. (3-15)
The potentials can now be defined in terms of B,
By = 03 Ay,g—8,4, 0. (3-16)
We can make use of (3-11, 12) to define symmetric secondary potentials as hefore,
Ay y=8,4,,~2,4,, (3:17)

and the symmetry properties (2-32-34) remain valid. The traceless property of the
rank 4 tensor is now replaced by (3-13) so that (2-37) becomes
D'A',rrr = E:pal"‘i;.rp_ EPE_H Al'p -+ EﬂarA - "f[gj,rm + ?.-’ij]' (3- 1 B)
The similarity of form between the linearized Einstein theory and the BW theory
described here, that we discussed briefly at the end of the previous section, can now
be extended to the case of interaction with matter. The Ricei tensor in Einstein
theory will now be }eB,, + 0(?) so that the Einstein tensor is 3e(B,, — 17, B) + 0(e?)
where B = ##B_,. Thus the Einstein equations are

ietB;.-l-_“ %?}ﬂ}'B) +0(e?) = K,I:m-:

where T, is the stress-energy tensor of the matter field, which is O(e) for weak fields.
Thus, we see that the similarity of form of the two theories persists in the interacting
case if we set 7, j—j,, = («/fe) T, + Ole). In this connexion it is interesting to recall
that &(y,, j—j,) = 0. (It is to be emphasized that the formal similarities with
linearized gravitational theory are pointed out here only for their intrinsic interest,
and the discussion is not meant to imply any inferpretation of the BW spin-2 theory,
which is essentially a theory in flat space-time.)

Finally, we write down an expression for 4 , . in terms of B, ., which is essentially
an expression of A, in terms of the potentials without reference to the currents. We

ixe B,, = = (2,4 0i) (3-19)
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and hence B = -6y, (3-20)
; I B
s0 that Jw = E(ﬂmﬁ—-ﬁp) - (3-21)

substituting this expression in (3-10) then gives

A = B,uv,mr + é(?}ﬂ,ﬂ BJ'-‘J i TJJIIC"BJ‘,‘J + ?;"Jv'-‘?B#p — M B,ur.r} =i '&B(;‘}pp?fﬂr ~ N ?l'rp:" (3-22)

Jrepr

4. Change of representation as a gauge group. We come now to the central idea behind
this paper, which is the generalization of the transformation matrix § of (1-22) to
a gauge transformation in the Yang-Mills sense (16) — we will let S vary over space-time.
The SL(2,¢) subgroup of the SL(4,¢) transformations (1-21) now has 4 x 4 matrices
S(x) of the form

S = () .
. [S*()]!
where the 2 x 2 matrix S(z) is unimodular, and space-time dependent. The Pauli mat-

rices in (1:22) must of course also be space-time dependent: define o%(z) (2 = 0,1, 2, 3)
to be an arbitrary set of linearly independent Hermitian 2 x 2 matrix fields, subject

(4-1)

to the transformation o(z) > S() 09(z) S*(a) (£2)
and define g(z) = —e[o%(x)]Te, €= ( 1 ]) " (4-3)
which then transforms to [S'x)] &4 (x) S (x) (4:4)

" o) Y . '."" gl f e - "T"I:'rj =
under (4-2). The matrices y(x) (E“(:cr) ) (4-5)

transform to S(x) y*(x) S~1(x) under (4-2), with S(x) given by (4-1). (Note that we are
now using small Latin indices a, b... for vector component labels rather than u, v, ...
of previous sections. The reason for this change of notation will become apparent but
at the moment no significance is attached to it.) The operator ¢, in the free-field
equations occurs in the combination y#@,. We shall replace this operator by y*(x)d,
where the d, are differential operators satisfying

d(AB) = (d,A) B+ 4d,B, |

: {4-6)

d,C = 0 for constant C;)

we will not assume they commute, but instead we write
I:du! d b:f = ‘Yuehv(m} rf‘_, {4'_":'

Note that this is not an added assumption—at this stage we could set the X ,° zero
and identify the d, with 8/2x® where 2 is a Euclidean coordinate system in flat space-
time. Even with non-zero X ,° we can consider the d, to be linear combinations of the
d/éx® with real coeflicients (which satisfy a relation of the form (4-7)) and then
vi(x) d,(x) = y'“(x) 0/dx® where y''(x) is obtained from y?(x) by replacing o%(x) by
a linear combination of themselves, which of course makes no difference since the
o4(x) ave arbitrary. However, the assumption that the d, are linear combinations of
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¢/éx® for some Euclidean coordinates x will not be made. We shall use only the
properties (46, 7) of the d,. The Jacobi identity dy,,, = 0 where d,,. = [d,|d,d.]]gives
the following equation that the X ,° must satisfy

[{m .\.'Mf+ Xw,_.".?‘:“}..f ==l (4:Ta)

The Lorentz transformation for a Dirac spinor is still given by the matrix L of

equation (1-8), but with o?(z) dependent on space-time the matrix L will be also
(though of course Aj are still constants),

ai(x) = A} L(x) o¥(x) L'(x). (4-8)
The infinitesimal generators of L(x) are then
1o®(x) = Ho(x) T(x) — o) T(x)) (4-9)

so that L(x) is space-time dependent through its generators—the parameters of the
Lorentz group are of course constants. The Lorentz group itself then hecomes in a
sense a Yang-Mills group, but in rather a different way from the usual kind of Yang-
Mills group where it is the parameters that are space-time dependent. For a treatment
of the Lorentz group as a Yang-Mills group in the usual sense see Utiyama(17) and
Kibble (18). These works make use of a Lagrangian formalism (which we are avoiding
here) and by a suitable simple choice of Lagrangian for their auxiliary ficlds these
fields can be identified as Einstein’s gravitational fields. Our use of Bargmann-Wigner
formalism rather than Lagrangians (the BW equations are particularly complicated
to deal with in Lagrangian theory (19)) enables us to relate gravitation to the BW
spin-2 theory. In any case our Lorentz group is at this stage not really a Yang-Mills
group since the A} in (4-8) are constants.
Defining the 4 x 4 matrix
Lz

L(x) =( () [L’[.?:}]")' (4-10)

the equations 5@ DY g ns, = MY 4, e, (411)

are nof invariant under the Lorentz rotation

Ir’f_‘ll_.._fg‘ — Lﬂl‘ . 'LE: ]r'?ﬂ,...ﬂ':"
ve—=7y* (= AjLy*L71), (4-12)
d, - (A~1)id,, J
due to the non-vanishing of d , L (for notational convenience we will drop the convention

of indicating the z-dependence of the various quantities explicitly). We must replace
d,in (4-11) by D, where

Dﬂ ?r;'.ﬂi ]_..,_'Iu o d{l ]l:r.-f;.--—‘lh . rﬂf’:‘ !rr}E;I; Asy - Pﬂﬁziﬁ_{] E....:l:,' g r'-‘fi-t, ifa-ill...f';' {4- ] 3:’
where I, is a set of auxiliary fields with the Lorentz transformation law
I, = (ALl L+ Ld, L. (4-14)

(The definition (4-13) is extended to quantities with upper spinor indices by the re-
quirement that for a Lorentz scalar D, is equal to d,,. Then

D4y ) = d 5 4) gives Dp = d i+ 35T
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The matrices I', can be taken to be a linear combination of 7, = (7,7, —747.):

I'y = dgau. 7™ (4-15)
where g is a universal coupling constant for the minimal coupling of u,,, to all BW
ficlds. The transformation law of the a,,, is

oo = (A1) (A1)}t — ; tr [ye, Ld. L1, (4-16)
The need for a generalized derivative (4-13) exists only for spinors, since for vectors

and tensors the Lorentz transformation matrices are constants. However, it will be
convenicnt to define, for any vector v, the quantity

D,v, = d,v,—C, 2, (4-17)
and hence D, =d, v"+C, b, (4-18)

where C,,% has a tensor transformation law (i.e. its transformation law has no extra

et

terms like the final term in (4-16)) and will be chosen so that
"Uu?b = d&?b—“ﬁm?b.l_(’lbqr?c = 0. (4'””

That this is possible is seen by noting that d, v, is a linear combination of the v, due
to (4-6) and [I',,y,] is a linear combination of the v, due to (4-15). We obtain

Coa® = g+ 3 tr [(d,7,) ¥°). (4:20)
Under a Lorentz transformation the second term in this expression becomes
ALt [(dyy,) 7°) (421)
which, by making use of ye = AfLyoL-1, (4:22)
can be shown to be equal to
(AT (ATNGAL L tr [(d,y,) Y*] + 4 tr [y,2Ld, L], (4-23)

The first term in (4:23) is just the tensor part of the transformation law of

".'*l. tr [(du‘:”b) -:‘,:]'

while the second term exactly cancels the extra term in the transformation of G 1.
Hence €, ¢ is just a tensor under Lorentz transformations.
The tensor Gy, is skew-symmetric in (be) since (d,y,) v, = —v,d,,7, by the constancy

g L :
Of‘:ﬁ.bc L 2(7’5}’!&—!_ f‘ﬂ?b)' Cfmc T [4'_)4;.

‘el
The generalized derivative of the constant tensor €, is then

D eCatea = C'(m:! Efbed T ‘) e-’r'-?uﬁ.'ff + Un-f Canfu 5 C'Ir.'r:f Eabies

[ 8-
&n
T

5" *‘;'1-IErrbrrI =0 (4-20

(the second line is proved from the first by assigning specific values to abed).
With (4:19) and (4-25) we see that in the generalized BW equations

TY f _— I/
& A, '“u Wi, Ay = MY 4 p<ly
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we can pass to the tensor formulation simply by replacing &, in the tensor formulations
of section 2 by replacing &, by D,. Thus for spin 2

Y5 DoV pnen =0 (4-26)
implies Dod . =0, (4+27)
or equivalently, D Apyze = 0. (4-28)

We now see that we have again the difficulty of introducing potentials, since with
(4-28) in place of (2:25) we can no longer write A, in a form analogous to (2-26).
We have a similar difficulty in the spin-1 case, where (2-4) is replaced by

Do fror = 0. (4-29)

These difficulties will be solved in the next section by identifying the auxilliary fields
. as the potentials of the spin-2 field.

We now note how the equations generalized by replacing d, by D, are already
invariant under the gauge transformations

! B B
VA, Asg e Sd:' . "Sﬁ;.: '.'J‘F"-El...ﬂgj‘

vh> Sy, (4-30)
Y5 = 75,
du - d'ﬂ‘
S[:t-']
where 8= ( [S“{m)}“)

for any unimodular space-time dependent 2 x 2 matrix S(x), provided the I', are
identified as the auxiliary fields for the Yang-Mills group (4-30), with transformation

; a
an I, — ST,8-1+8d,81, (4:31)
- 1
or equivalently, At —> Ay — §‘|;r [VpeSd,S1). (4-32)

The €, (4-20) are invariants under this group.

Finally, we will write down some relations that will be required in the following work.
We will introduce a set of four real linearly independent reference vectors at each
space-time point

ki (p=0,1,2,3 are labels for the four vectors) (4-33)

which are supposed to be smoothly varying functions of space-time. We define their
scalar products .
g = hgh; (4-34)

the matrix g has an inverse g,,, because of the linear independence of the vectors.
These two matrices can be used to raise and lower the Greel indices, while components
with Greek indices can be assigned to any vector or tensor by projection onto the
I'(:fw!.‘l‘l‘:l'lfff_‘ veetors:

v, = hﬁl’ﬁ. {4:;5)

From (4-34) we obtain Tar = Wihy,. (4-36)
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We extend the definition of the generalized derivative by requiring it to be zero for
ki, that is, we define quantities I " by

D hy? = d,h,? —Cyt + Ty = 0 (4-37)
and then define D,v# =d,vr+ T, ve (4-38)

All the expressions we have obtained in this section can now be rewritten with Greek
indices (taking note of the fuct that d ' is not zero). The commutator of the operators

d‘” o [{I.f;‘-' dl'] . ‘}..I'I:I'PEE!-" ‘ {4_39]
where Y.p=X, P+ (d, by —d,h%) h{;“

Since the reference vectors (apart from linear independence and continuity require-
ments) are arbitrary, the formalism is invariant under a space-time variant group
SL(4, R) of transformations
B bt — GERE (4-40)
It can easily be shown that ¥, # transforms as a tensor under this group (i.e. it
becomes (G=1)§ (G- GLY, ;7) provided

.:pr'.'f_dl,r::; = {). (4-41)

If this restriction is imposed on the transformations, then we can choose the X .2
so that Y7 = 0, for it will then remain zero under the group (4-40). The d, then
commute and we can identify them as differential operators in terms of a coordinate
system: @,. The restriction (4-41) is then & 0 — 8,64 so that 4 has the form &, y# for
some quantities y#. The transformations (4-40) are then general coordinate tra nsforma-
tions and y# are the new coordinates obtained by the transformation G, The trans-
formation law of the ', (4-37) is found to be

L = (GGG D7 GE + (620,6-12)) (1-42)

which identifies them as components of an affine connexion, or equivalently, as
auxiliary fields for the “Yang-Mills® group (4-39). From D, g,, = 0 (which follows
from (4:34)) we find the symmetric part is given by

%(Fppp + Fn’;rp-} s {::s'} = éyﬂ"{f}p !i"rrp T H;iyw! - é’ln' y;u' + "'f:'rr,ra + Tl‘rrm-:' (4"13)
where the skew part will be written

L( I.‘ "-p T _[1“;‘;"} = é?:“.p; {4"]:4)
which is a tensor under (4:40).

The commutator [D,, D,] is found to be, for a vector,

"
i.j'),ul ‘!qu v,u = Iﬂ_lrn'_prr ?J'ﬂ_ —f“ .’f:w"f)‘_, 'U'“, {‘l"*l‘ﬁ}
thI'f.' jf,rufp” = E]l' I ‘_nlrl:!lr gy a‘ﬂ I1;ur" + ! ‘plrlf‘ ]1.i||(r = F.uJ-a F.l;rvl |:4 4 ﬂ]

and for a spinor (rank 1 with lower index),
[IJJII "{Jl'] *f’f = %!I'.ﬁl'ﬂ,d },Jﬂ ';t,'r + ',I'rl'trnw !'l:f ['I'“I T]

whero bR, gy = 9,1, -0, 1, +[I',,T,]. (4-48)

28 rar fin
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The Jacobi identify for the operators D,.

[D,[D,. D11+ [D,[D,. D)1+[D,[D,. D,]] = 0. (4-49)
leads to the properties: Dy R, ," = =Ty, R (4-30)
Ry o = = Do Ty — T, 2 T,° (4:51)

With the identification of (4-40) as general coordinate transformations and of P
as an affine connexion, the g, become the components of the metric. Any field equa-
tions satisfied by the field n;,,,, in (4-15) will give rise to equations to be satisfied by
the metric, =0 that the metric must now be interpreted as a physical field, as in general
relativity. Thus the introduction of the coupling (4-13) together with the requirement
that the d, be linear combinations of the ¢,, necessitates the introduction of a curved
space-time. In the next section we will investigate how the BW spin-2 theory is
related to Einstein’s theory.

5. Non-linear spin-2 theory. We now show in what sense the generalized Bargmann-
Wigaet spiretiony VR D VEsy 4, =MV 4 4y, (5-1)
gives rise to the flat space theory of sections 1 and 2 under the limiting process g — 0
where g is the coupling constant in (4-15). The limiting process involved is not quite
a straightforward concept, since in the process we expect the space time to become
flattened out, the coordinate system to be changed to a Euclidean coordinate system
(9. — 1..). the reference vectors hj to become aligned with these Euclidean coordinates,
and the matrices y* to become constant matrices, as the coupling constant is changed.
To facilitate the discussion of this limiting procedure we will take the v, in the curved
space-time to be constants. This can be done by a transformation (4-30) on all spinor
indices - in other words, we shall choose a *special gauge’ in order to freeze the group
(4-30). With this choice of gauge equation (4:20) becomes simply

Chrae = 95, (5-2)

so that now under the limit g — 0 we have D, - dq(D, - ¢,) for quantities with spinor
indices or Latin tensor indices.

We will also accompany an infinitesimal change dg in the coupling constant by a
change in the reference vectors so that a® defined by

hp=4ép +ga.? (5-3)
is unchanged. That is, we accompany a change &g in the coupling constant by a change
8h,? = }ga > (5-4)

in the reference vectors. Of course, (5-3) is not a covariant definition for either Lorentz
rotations or general coordinate transformations, but a7 has well-defined transforma-
tion properties. We shall define quantities ., = hlap 7, €tc., as if a,, were a tensor,
for convenience of notation. We then ﬁnd that bt- the invariance :f Tap = Ma154

under (5-4), the metric components must undergo a change T

e =—10g(a,,+a,,). (5-3)



General relativity from gauge invariance 439

In general a change of the form (5-4) cannot be brought about by a coordinate trans-

formation (this would require that ¢,a,f—¢,a be zero), so the change (5-5)isa change

in the geometrical shape of the space-time, accompanied by a change of the coordinate

system. This can be seen by the fact that if g is made zero by a series of changes (3-4)

then A,? becomes 6,# so that the metric components become the flat space metric 7,,.
We will define the quantities 4 wr OF

gﬂi' = ?J’;r + §.4 B (5'6-'

4 .. is of course not a tensor for coordinate transformations. Under the limiting process
described above it remains finite. In fact, by putting g infinitesimal in (3:3) we see that.
in the limit, 4, coincides with — 3a, +a,.). It will be shown that the limiting
procedure described above uncouples the gravitational field from other fields and from
itself, while leaving it finite, so that in flat space-time we are left with a linear spin-2
theory which is just the BW spin-2 theory.

That (5-1) becomes the flat space BW theory for spin s under the limiting procedure
described above is now apparent. The metric becomes the flat space metric 7,,. the
7* become constant matrices (equal to the y2) and D, becomes ¢, for spinors.

With (5-2) and the definition (5-3) the quantities I'y 7 of (4-37) are just

rb_f = gla, ? — EE,-.%P] (5-7)

so that they vanish in the limit and we can therefore write D « = ¢, for all quantities
(spinors, tensors with Latin indices and tensors with Greek indices).

We now come to the problem of setting up the spin-2 theory of section 2 in the
curved space. The spinor 1 ;. can still be expressed in terms of a real tensor 4, _
with the symmetry properties (2:19-22), the only difference being that in the defini-
tion of the dual of a skew-symmetric pair of indicese wpo 18 Teplaced by ke, _ where h is
the determinant of the 4 x 4 matrix A¢ (RE e = RERERE MEeE L, ). From (5-1) on Visen
(with m = 0) we get Diilli5en =D (5-8)
which does not enable us to define potentials by (2-26). The potentials must be defined
in such a way that (2-26) is recovered in the limit g - 0, This problem is already solved
in that the formalism of section 4 yields all the equations for a flat space BW spin-2
theory, with primary and secondary potentials as described in section 2, if we identify
the auziliary fields a , o themselves as the potentials of the spin-2 field.

According to (4:50) and (4-51), the Riemann tensor R, satisfies the eyclic sym-
metry £, = 0in common with A swper 1 also satisfies the equation (5-8), provided
the “torsion tensor’ T..? is zero (the assumption that T,.7 is zero also solves the problem
of potentials in the generalized spin-1 theory, in that we then have

Dy, fiar = & ufpor (5-9)

for a skew-symmetric rank 2 tensor, so that we can define A « by
fw=26,4,-8,4, (5:10)
and for any vector 0,4, ~0, 4, =D A,—D,A,if the torsion is zero). Defining B, by
r.,=gB,, (5:11)

28-2
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then B, remains finite in the limit g — 0, and with vanishing torsion is symmetric
in (ur). From (4-43) we then obtain

By, =¥, 4,,+0,4,,—-9, 4,) (5-12)

with 4 given by (5-6). This equation has precisely the same form as equation (2-35).
Moreover, defining o
~R

By po = g Arps (5* 1 3)

- |

which also has a finite limit, we obtain from (4-46)
A,.° =2(8,B,7—8,B,%) +2§(B,,"By” - B, By, (5-14)

which in the limit gives just (2:36). Therefore, if we identify this tensor as the one
occurring in the BW spin-2 theory (5-8), then B, are the generalizations of the poten-
tials of (2-35), and the secondary potentials are identified as the 4, of (5:6). The
potentials 4, _ of section 2 are then just

V. | oy — EPAW" (3-13)

Bpa
Taking the limit of (5-7) then gives

o - =1a
;ll.ﬂﬂ = uar._w,-,-q.C__,_.,,. (53-16)

where C,, = 1(a,,—a,,), so that the basic Yang-Mills fields 2a,,, of (4-15) differ from
the potentials A, of the spin-2 field only by a transformation of the kind described
in the paragraph following equation (2-28).

The remaining symmetry property imposed on 4, _ by the properties of {r;cp
is the traceless property which in curved space-time gives Einstein’s ‘empty space’
e R, =g*R,,, =0. (5:17)
It is quite remarkable that Einstein’s equations in this treatment have arisen from the
subsidiary condition Bl s (5-18)
on the zero mass spin-2 field. The analogous condition on the spin-} zero mass field
leads to the ‘left-handedness’ of nentrinos and the consequent parity violation of the
leptonic weak interactions.

Finally, we have to deal with the spin-2 ficld in interaction with other fields:

Ded .. = 9)yp0s (5-19)
where we have identified the coupling constant f of (3-1) with g, since this is the constant
that describes the strength of the coupling of the spin-2 field to other fields. Of course,

the 4, can no longer be proportional to the Riemann tensor since the Bianchi
identity is not satisfied. Instead we define

9

B R (5-20)

pe =

and identify B, , as the tensor of (3-10), with j,, some symmetric tensor constructed
from the other fields present

B.F'P‘" = AF"W + y(gpp jm‘ - y.-_nj;.m o o .'?m'jrp - yru‘jyp]' (-E-J':! | )
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Then B, =978, = —92)u+Gui) (5-22)
where j = j4 = g#j,,, or equivalently
R, =-9*uw+19uJ) (5-23)
R,—19,R = -9 jp—gpi) (5-24)
which because of the Bianchi identity implies that j,, must satisfy
DH(§ = Gywid) = 0. (5-25)

1f j,,,— 9,.7 is identified as a multiple of the stress-energy tensor for the matter field
then (5-24) is just Einstein’s equation for the gravitational field in interaction.
From the contracted Bianchi identity

D'R,pp = D, R, ~D,R,, (5-26)
the divergence of (5-21) gives just
..'I.rpa = Dpjﬂ':’_Du‘jpr (3‘ 7)
which generalizes (3-7) and identifies the *currents’ ;,,pc Using (5-22) to eliminate the
Juw from (5-21) we obtain the generalization of (3-2

2

"l,rn'p-:r:_;[R_mpo‘—i_ (g_up vo g,rwR:p"'gm'Ryp g:p ;rcr éRl‘g.ung‘r gpcrglp” [5':3)

which identifies the tensor €, ,, i
9
Ad,.==C

wor = o Curpa (5-29)

as the Weyl tensor (20). The Weyl tensor, as well as possessing all the symmetries
pes €an be shown to satisfy D, D,C,, . = 0, so that

Dtjpe =0 (5-30)

which generalizes (3-5) and completes the discussion of the generalization of section 3
in the presence of the self-coupling of the spin-2 field.

The fields 2,# that we introduced are of course just the usual ‘vierbein® fields (21)
that are often made use of in general relativity. In fact our formalism is invariant
under the usual ‘Lorentz rotations of the vierbein’ which are transformations

required for 4 ,

v® — Afvb

with space-time dependent Lorentz matrices, provided the a,,, are regarded as auxiliary
fields for this group also. The C,,, are not tensors for this generalized Lorentz group.
It is interesting to compare the present work with that of Sciama(22), who takes the
vierbein rotations as the crucial Yang-Mills group and works in a curved space-time
from the outset. A Lagrangian AR is varied with respect to the h,# and a,,” indepen-
dently. For variation with respect to the %k, we get Einstein's equations, while
with respect to the @,,” we get, in the presence of matter possessing spin, a relation
which implies the non-vmushmg of the torsion. This is to be contrasted with the
present theory where we have abandoned the Lagrangian approach, relying instead on
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Bargmann-Wigner equations, and identified the a,,” as the gravitational ficld rather
than an independent entity. Also, the vanishing of the torsion tensor is an essential
aspect of the formulation. Any Lagrangian approach to the ideas presented in the
present work would be expected to be quite complex, on account of our reliance on
Bargmanu-\Wigner theory.
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