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The Dirac spinor in six dimensions

B Y E. A. LORD

Department of Mathematics, King's College, University of London

(Received 17 November 1966)

Abstract. The spinor representations of the rotation group in a six-dimensional space
with indefinite metric are shown to be four-component spinors, which become the usual
Dirac spinors when the formalism is restricted to a four-dimensional subspace.
Eriksson's work on the five-dimensional Lorentz group is found to result from a restric-
tion of the six-dimensional treatment to a five-dimensional subspace, and the alge-
braic significance of Eriksson's work is thereby clarified.

1. Introduction. Some aspects of the relationship between the Clifford algebras
and the spinor representations of the complex orthogonal groups are well known. The
classic work on this aspect of spinors is Brauer and Weyl's' Spinors in n Dimensions '(2).
The physical importance of this work is apparent in Dirac's theory of the electron (3),
the 4-component wave-function for a spin \ particle being a spinor whose transforma-
tion law under Lorentz rotations and reflexions is derivable from the structure of the
Clifford algebra C4.

An aspect of spinor representations is developed in the present paper which has not
previously been dealt with in general terms in the literature. The Weyl equation (see,
for instance, Roman's Theory of Elementary Particles (10)) deals with a 2-component
spinor representation of the proper Lorentz group, which has no analogue in the work
of Brauer and Weyl. The connexion between this 2-component representation and the
theory of the quaternion algebra C2 is given by Rastall(9), Ellis (5), and Lord (7). The
two component spinor representation of the proper Lorentz group, and the derivation
of its transformation law from the structure of C2, is in fact a special case of a more
general procedure whereby a 2"-component spinor representation of the rotations in
a certain real (2v + 2)-dimensional space with indefinite metric can be obtained from
the structure of the Clifford algebra C2v. The aim of the present paper is to investi-
gate these representations, with particular reference to the 4-component spinor
representations of the group of proper rotations in a six-dimensional space with
metric (+ + + + + - ) .

2. The' basic' spinor representations. The Clifford algebra Cn is defined to be the alge-
bra generated by a set of n elements e^ (ji = 1,... n) which anticommute with each
other and have unit square

b(e/tev + eve/l) = 8/tv (ji,v = 1, . . . n). (2-1)
48 Camb. Philos. 64, 3



766 E. A. LORD

When n is even (n = 2v, say), there is only one irreducible representation, which is
2"-dimensional, and when n is odd (n = 2v+1), there are two inequivalent irreducible
representations, both of dimension 2" (Boerner, The Representations of Groups(l)).
A linearly independent basis for the algebra is the set of 2™ elements

1) &fi> e/iev> e/iene
p> •••> ( e i e 2 ••• en)>

(fi<v) (n<v < p)

which, for n even, are all traceless in any representation, with the exception of the unit
element.

The skew-symmetrized products

e'/tv ~

are found to satisfy

so that the quantities
<V = *V (2-3)

formed from an irreducible representation of the ê , are the infinitesimal generators of
a 2"-dimensional representation of 80(n, c). The O^v are Unearly independent, so that
the subspace of Gn consisting of the elements G^, considered as a Lie ring, is isomorphic
to the Lie ring of SO(n, c) (Boerner (l)). We shall call such a representation of SO(n, c)
a basic spinor representation. We shall show that it is a faithful representation, and
consequently the basic spinor representation is a representation of the whole group,
not just a subgroup. There are two basic spinor representations when n is odd, but
these are in fact equivalent; when n is even there is one basic spinor representation,
and, as we shall see, it is reducible.

The basic spinor representations, introduced here from an infinitesimal viewpoint,
are the ones discussed by Brauer and Weyl. For any orthogonal matrix

and any irreducible representation ê  of the generators of Cn, there exists a matrix S
such that -. Q o_, ,„ ..

ep = A^/Se,,̂  \ (2-4)
The matrix $ is determined only up to a numerical factor, so we may impose the
restriction that S be unimodular. The matrix S is then determined to within a numerical
factor ±1. If n is odd a matrix 8 satisfying (2-4) exists only if A^ is unimodular as
well as orthogonal. The matrices S therefore give a representation of SO(n, c) if n is
odd, and of the full group 0(n, c) if n is even. Any matrix S determines the rotation
A^ uniquely, since

Hence we have established a faithful 2-1 representation of the group 80(n, c) (and
of O(n, c) if n is even), which is in fact the basic spinor representation as defined above.
To show this, we take an infinitesimal rotation

A,,, = Sp, + eAp (e^ = - ev/l infinitesimal),
8 = 1 + %£/iVG/iV,
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and the expression (2-4) then becomes

Multiplying by ê  and making use of the identity

e / f / ? = (»-4)V>
we obtain the solution (2-3) for the infinitesimal generators.

When n is odd, the two irreducible representations of Cn can be obtained from the
irreducible representation of the even Clifford algebra Cn_v Thus, for instance, if
y^ (ji = 1... 4) are the generators of the Dirac algebra C4, the matrix

Ys = 71727374

has unit square and anticommutes with the four generators. The matrices yfl (ji = 1... 5)
therefore satisfy

>) = *>, (/*,»= 1,... 5), (2-5)

and so we have formed an irreducible representation of C5. The other irreducible
representation is obtained by the substitution

7,^-7, (^=1...6). (2-6)
The quantities G^ = \(yllyv - yvyM) fji, v = 1,... 5) (2-7)

are the infinitesimal generators of one of the 4-component basic spinor representations
of #0(5, c). As we see, the generators are unaffected by the change of representation
(2-6) of Cs, and so the two basic spinor representations of 80(6, c) obtained from the two
inequivalent irreducible representations of G5 are in fact equivalent. It is easy to see
that this is true for any odd n—there is no loss of generality involved in our choice
n = 5. The basic spinor representation 80(5, c), as defined here, has been thoroughly
discussed by Pauli (8).

The G^v given by (2-8) are linearly independent, so that the ten-dimensional sub-
space of C5 given by the quantities G^, considered as a Lie ring, is isomorphic to the
Lie ring of 80(5, c). In general, the Lie ring denned from the %n(n — 1) elements
\epv (/*>v = 1 • • •») of Cn is isomorphic to the Lie ring of SO(n, c). Thus the group of
transformation matrices defined from the infinitesimal generators ^e^ is a faithful
representation of the group 80(n, c). The basic spinor representations therefore give
a representation of the whole group, not just a subgroup.

The representations of C6 generated by y^ and by — yj^ji = 1,... 5) are inequivalent,
so that there is no matrix 8 with the property

7/. = -£7/ t 'S-1 (/*=1,...5).

Reflexions in the five-dimensional space are therefore not represented by the basic
spinors, and this is true for any odd-dimensional space. In an even-dimensional
space, however, reflexions are included, so that the basic spinors give a representation
of the full orthogonal group 0(n, c). For instance, in four dimensions the equations

-i (»= 1,2,3),

y4 = -S7iS-1

48-2



768 E. A. LORD

representing a reflexion parallel to the fourth axis, have the solution

s =

3. Decomposition of the basic spinor representations. We have already stated that the
basic spinor representations of SO(n,c), for n even, are reducible. We shall consider
here the reduction of the basic 8-component spinor representation of 80(6, c) into
constituent 4-component representations. The procedure is easily generalized to apply
to any even-dimensional space. An irreducible representation of the Clifford algebra
C6 can be constructed from a given irreducible representation of C5. The y^(ji = 1,... 5)
of an irreducible representation of C5 satisfy (2-5), so that the quantities ea (a = 1,... 6)
defined by

/ y B\ \
eu = ( - * ) ! T)-U. ) (/* = 1, . - - 5 ) , I

(3-1)

satisfy ^aefi + epea) = 8afi (a,/? = 1,... 6).

For the moment the matrix B is completely arbitrary. The ea therefore give an irre-
ducible representation of C6. They can be written more concisely in terms of the sets
of matrices aa and aa, denned as follows:

^ = 7 ^ , a^-B-X (fi=l,...5)A

a6 = iB, a6 = iB-K J

The generator ea of C6 can then be written

e. = ( - . ) ( - °") ( a = l , . . . 6 ) . (3-3)

With y5 = 71727374 w e t n e n

and e
afi

This latter expression shows that the infinitesimal generators of the 8-component
spinor representation of S0(6, c) is the direct sum of two 4-component representations.
The basic spinor can be written

' - © •
where <j> and x a r e four component spinors which transform according to representa-
tions with infinitesimal generators

and G®} = - \{aaafi - afiaa)J
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respectively. In terms of the chosen representation y^ of C5 these generators take the
form

(3-5)

In either case, the set of 15 generators is linearly independent, so that the Lie ring
defined from the Gap is isomorphic to the Lie ring of #0(6, c). More generally, the sub-
space of %n{n+\) base elements G^ = i(e/ie1,-e>,eA), ^ n + 1 = -^ie^iju, = 1, ...TO) of
an irreducible representation of Cn, considered as a Lie ring, is isomorphic to the Lie
ring of the rotation group SO{n+ l,c) (Boerner (l)). The case n = 3 is an exception,
which we shall discuss in section 4.

The 15 generators in either case are just the traceless base elements of an irreducible
representation of the Dirac algebra Ct, and consequently any (4 x 4) matrix can be
written as a linear combination of them. The Lie ring of the group $0(6, c) in this
representation therefore consists of all traceless (4 x 4) matrices. Thus the lie ring of
80(6, c) is isomorphic to that of the unimodular group &L(4, c).

We may also consider the behaviour of the basic 8-component spinor under reflexions
in the six-dimensional space. The decomposition into separate 4-component quantities
then no longer occurs, of course. For instance, the reflexion parallel to the sixth axis
is given by the matrix / —B\

^ ( )

and so, under this reflexion the 8-component spinor tfr indergoes the transformation

K we set 5 = 1, the analogy with the behaviour of the 4-component Dirac spinor
(in the Weyl representation) under reflexions in four dimensions becomes at once
apparent.

4. Quaternions. The linear independence of the generators G£} and G^ shows that
the Lie ring generated by these quantities is in fact isomorphic to the Lie ring of SO(6,c)
This is not true for the corresponding case for $0(4, c). We may define an irreducible
representation of C4 in terms of the quaternions, in just the same way that the gener-
ators ea of C6 were constructed from the generators of the Dirac algebra. Defining

and taking an arbitrary (2 x 2) matrix B, we have a representation y Jji = 1...4)ofthe
generators of C4: . .

r,-(-0 , ' ' .
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where <r< = ,ff<.B, a^-B^S, (i =1,2,3) , !

o~i = iB, cf4 = iB'1. J
We then find

so that, in this representation, the 4-component basic spinor representation rfr of

80(4:, c) can be written I I, where the constituent 2-component spinors cp and x °f
\X/

80(4, c) transform according to representations with generators

G<$ = ^(SiSj — SjSi) = \iSk (i,j,k an even permutation of 1, 2, 3),

and

respectively. These sets are not linearly independent. Consider an infinitesimal ele-
ment AAy = Spv + e^/i, v = 1,... 4) of 80(4,c). The spinors $ and x transform to p<f>

qX w ere ^ = 1 + (\eiiheii - eki) \%8k,

9 = 1 + (.¥meit+eki) \iB~iSkB.

Thus neither of the matrices p and q determines uniquely the e^. However, if eti

is real, eki imaginary, then the infinitesimal rotation e^ is determined if either p or q
is given.

The subgroup of $0(4, c) for which A^, A44 are real, Ai4 imaginary (i,j =1,2,3), is
represented faithfully by either p or q. This subgroup is the proper Lorentz group. In
this case, choosing B = 1, we have

p = tor1,
so that the spinor x transforms according to the matrix adjoint to the transformation
matrix for cr. We have then arrived at the usual decomposition of the 4-component
Dirac spinor representation of the proper Lorentz group into its two constituent 2-
component spinors.

5. Spin-tensors in six dimensions. We now return to the consideration of the 4-
component spinors in six dimensions, introduced in section 3. The ( 8 x 8 ) matrix 8

representing a rotation of 80 (6, c) has the form I ), the infinitesimal generators

for the matrices p and q being given by (3-5). The basic 8-component spinor has the

form I ). Thus the two types of 4-component spinors have the transformation laws

44

We may call these spinors' co variant of the first type' and' contravariant of the second
type', and define quantities a and /5 with transformation laws

a -> ap-1,
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which we call 'contravariant of the first type' and 'covariant of the second type',
respectively. A spin-tensor in the six-dimensional complex space can then be defined
as any quantity with mixed tensor and spinor transformation laws under operations
of 80(6, c).

The transformation law of the ea given by (3-3),

decomposes as follows aa = Xappa,p q-

These equations may now be considered as the definition of the transformation laws
of two spin-tensors aa and aa, and also as the statement that their components remain
invariant. These components are fixed by (3-2) from a given fixed (invariant) represent-
ation of C5. From (5-1) we obtain

Kp = - \ t r (P-Ia«qa>fi) = ~ Jfr {<TXK Pa/i)> (5'2)

so that the rotation Aa/J is not in general uniquely determined by either p or q alone, but
only by specifying both p and q. Thus the transformation matrices p and q of the 4-
component spinors <j> and x do not in general give a faithful representation of the whole
of SO{Q, c), only of a subgroup. The form of this subgroup depends on the choice of
the matrix B.

The components of aa and aa given by (3-2) satisfy

BaaB = -aa + 2iCaB, (5-3)

where Ca is a unit vector in the direction of the sixth axis. We wish to re-interpret this
expression as a fully covariant equation for the operations of SO(6, c). For a fixed
vector Ca we must therefore re-interpret B as a rank two mixed spinor whose compo-
nents have the transformation law

B^pBq-1. (5-4)

The components of this spinor coincide with those of the arbitrarily chosen fixed
matrix of (3-2) only in those reference frames in which the sixth axis is oriented along
the vector Ca. These frames in the six-dimensional space we will call the ' special' frames.
The special frames are transformed into each other by the subgroup of #0(6, c)
consisting of matrices of the form

i.e.: the subgroup 80(5,c). For an infinitesimal rotation about Ca, the form (3-5) of
the generators for p and q shows that

p = BqB-1,

B = pBq-1,

so that the spinor B is in fact invariant under these rotations.
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We now define the spin-tensors ya and ya as follows:

_a "_ ' I (5-5)

These spin-tensors have the transformation laws

and satisfy y a = — y a

Unlike the aa, aa, the quantities ya, ya are not invariant, except under the operations of
S0(5, c) as defined above. In the special frames the components of ya coincide with
those of the generators of C6 from which the aa are defined, and y6 = i. In the special
frames, _ ,

y^-Y (
7e = 7e-

The components of the spinor B are determined by those of the aa, and the vector
Ca. In the special frames we have

i = y6 = a6B~i = CaaaB-\

so therefore B=— iCaaa. (5-7)

This is a fully covariant equation, valid in all frames. The relation

implies BC^a^ = — iCpCp = i,
so that B-1 = -iCfia/3. (5-8)

6. Special matrices of the Dirac algebra. Given any irreducible representation
y^/j, = 1,... 5) of the Dirac algebra C4, there exist matrices H, C and e with the proper-

y- = C-%C,

J,, = erxy^ ( ^ = 1 , ...5),

where y*, y* and y^ are respectively the Hermitian conjugate, complex conjugate
and transpose of yA. Defining

76 = 76 = *>

we can write yl = — H~l7yaH,

y X = _ C - i y a 0 ,

Ya = e~1yae ( a = l , ...6)..

(6-1)

The matrix H may be chosen Hermitian, e is skew-symmetric, and we may write
C = eS-1. A discussion of such matrices may be found in Roman's Theory of Elementary
Particles (10). Now, if the equations (6-1) are to be re-interpreted as fully covariantrela-
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tions between spin tensors of #0(6, c) we must interpret H, C and e as rank two spinors
with the transformation laws

and e ->• pep.

(i) Suppose the components of aa and aa are determined by choosing the spinor B
to coincide with e in the special frames. Substituting e for B in the expressions (3-5)
for the infinitesimal generators, we find.

Thus, with this choice for B, the transformation matrices p and q for any rotation
in the six-dimensional complex space satisfy

q-1 = p .

Thus the spinor B has the transformation law

and therefore coincides with the spinor e in any reference frame. With this choice for
the spinor B, (5-2) becomes

Kfi = -l^(faapafi) = - £ t r (qaaqafi),

so that either p or q determine the rotation completely. The two-valued spinor re-
presentations of SO(6, c) given by (j> or % are therefore in this case faithful representa-
tions of the whole group.

(ii) Suppose now we choose the spinor B so that it coincides with the spinor C in
the special frames. Substituting G for B in (3-5) we obtain

G%=-G%*.
Thus, if we restrict the group S0(6, c) to the subgroup i(6) for which A ,̂,, A66 are real,
X ̂ imaginary, we have x _

for the representation matrices associated with a rotation in L(6). With this restriction,
the transformation law of the spinor B is

and consequently C and B are identical. The matrix Aa/J of a rotation in L{6) is deter-
mined uniquely by the matrix^

so that the four-component spinor representations in this case give a faithful repre-
sentation of L(6).

(iii) Similarly, we may identify the components of the spinors H and B in the special
frames. In this case,

= -G™ {ft, v = 1,... 5),
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so that, again for the subgroup L(6), we have

and the transformation laws of H and B are identical. The rotation Aaj3 of L(6) is

so that the 4-component spinor representations are faithful representations of the
subgroup L(6).

This third choice for the spinor B is the one we shall use in the remainder of the
paper. We must then restrict the operations of #0(6, c) to those of the subgroup 1/(6).
This subgroup corresponds to the group of rotations in a real six-dimensional space
with signature (+ + + + H—). The expression

is then a fully covariant relation between spin-tensors in six dimensions.,

7. Relations between tensors and spinors. If we restrict our attention to the subgroup
L(6) of SO(6, c), then we may take the spinor B to satisfy

yt = -B~iyaB. (7-1)

In this case, for any rotation, the transformation laws of the elementary 4-component
spinors are

and we may also introduce quantities with the transformation laws

a -» ap'1,

The spin-tensors Gap = — ̂ (aaa^ — a^aa) are invariant under rotations; they have the
transformation law „ ^ •>

The set of 16 matrices 1, (?a/? span all (4 x 4) matrices, and therefore any rank two
spinor O in the six-space with the transformation law

(7-2)

can be written as a linear combination of 1 and Gap

where I is an invariant and 0a/J is a rank two skew-symmetric tensor under operations
of L(6). On restricting the rotations further to real rotations in the five-dimensional
subspace perpendicular to the sixth axis, we obtain

where y^ = ^(y^yv — y ^ ) . Restricting the rotations still further to a four-dimen-
sional subspace, we obtain the well-known correspondence between a rank two Dirac
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spinor and a scalar, a vector, a skew-symmetric rank two tensor, a pseudovector and
a pseudoscalar (Eddington(4)).

Suppose now the matrix of components of <E> is traceless—a condition which is in-
variant under the operation (7-2), we then have

* = Wafitar (7-3)
We have therefore estabhshed a one-one correspondence between traceless rank two-
spinors with the transformation law (7*2), and skew-symmetric tensors in the six-
dimensional space.

Another correspondence between spinors and vectors is obtained as follows. For
any representation yA(/t = 1... 5) of the Dirac algebra, the matrices

e, y^e are skew-symmetric,

and i(7fl7v~7i>7/i)e are symmetric.

Thus any skew-symmetric (4 x 4) matric c can be written

c = Aayae (a = l, ...6). (7-4)

This is a fully covariant equation under the operations of L{6) provided we interpret
Aa as a six-vector and c as a rank two spinor with the transformation law

c -> pep,

under which its skew-symmetry is preserved. Thus we have estabhshed a one-one
correspondence between rank two skew-symmetric spinors and six vectors.

8. Introduction of spinor indices. So far we have suppressed all spinor indices. We
find that by employing four types of spinor index (upper and lower, dotted and un-
dotted), we can indicate the transformation law of any spin-tensor by the nature of its
indices. We shall use capital latin letters to indicate spinor indices, the components
of the transformation matrix p being written as pA

B, which the components of the
adjoint matrix (pt)~1 = q will be written pA

B. We then have four types of rank one
spinor:

(i) covariant, <f>A, with transformation law <j> ->• p<j>;
(ii) contravariant aA, with transformation law a ->• atp~1;
(iii) covariant, dotted /?^ with transformation law ft ->• ftp*;
(iv) contravariant, dotted x^i with transformation law % -> ^)~XX-

A quantity with a covariant transformation law can be formed from another by ' con-
traction' on two spinor indices only if one is a superscript, one a subscript, and if they
are either both dotted or both undotted. The quantities

7a> 7a. <*•*> «a. B> C and e,
then have the transformation laws implied by the following assignment of indices:

7aAB, %AB, «WS, of"4, BA&> CJ6, eAB.

Given any mixed rank two spinor oyB, we can form an undotted rank two spinor
bAB from it by multiplication on the left by the spinor C

(8-1)
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We may also form a skew-symmetric spinor cAB from a^B as follows. We first form
the six-vector Aa according to

iB (8-2)

and then make use of the correspondence between six-vectors and skew-symmetric
spinors to define „

CAB = AayaA
GeCB. (8-3)

We can show that cAB is in fact the skew-symmetric part of bAB.

Proof. We have Aa = — Jtr (aaa)

Now, all the e~xya are skew-symmetric, so this expression involves only the skew-
symmetric part of b, which we will denote by {&}. Being skew-symmetric, {&} is a
linear combination of the yae, so {&} e~x is a linear combination of ya

Hence Aa = - \bp tr (yfi ya) = bp8pa = 6a,

so that {&}6"1 = ^a7a>

{6} = Aayae = c,
which is the required result.

9. Spinor components in a specific representation. In this section we shall employ a
specific representation of the generators of the Dirac algebra, in order to write out the
components of the spinor a^B and cAB of the previous section in terms of the six-
vector Aa. We shall find relationships between spinor components in six-dimensions
which are generalizations of certain spinor equations in a five-dimensional space
which were first obtained by Eriksson (6) from quite different considerations. The theory
already outlined in the present paper will have invested these expressions with a lucid
geometrical and algebraic significance which they did not have in Eriksson's original
work.

In a fixed reference frame, we will take for the ya the following matrices:

<rx, o-2, o-3p3, o-3p2, a-zpv i, (9-1)

where the ai and pi are two mutually commuting sets of (4 x 4) representations of C2:

o-i = St®
« = 1,2,3),

Pi =
where St are the Pauli matrices given by (4-1). The first five of the ya are Hermitian,
y6 skew-Hermitian, so in this reference frame B is a multiple of the unit matrix.
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The matrix C must commute with those y1;... y5 that are real, and anticommute with

those that are imaginary. Thus C is a multiple of (r1p2. We will take

= -icr1p2 =

l

so that, following Eriksson in writing the spinor indices as (1,2, — 2, — 1), instead of
(1, 2,3,4), our expression , _ p 6 . .

becomes aj^B = (sgaA)b_AB.

The metric spinor is any multiple of C in our reference frame. We shall choose
e = — iaxp2, so that the matrices yae become

The relation between a skew-symmetric spinor cAB and a six-vector Aa,

then takes the explicit form

A5-iAt -A1 + iA2

-Ax-iAt

A3-iA6 1 2 z i

The matrices aa are given by

— ax, — tr2, —o-3p3, —o-3p2, —(r3pl, —i.

The correspondence Aa = — ^
can now be written out explicitly:

2{A1

2(^3

2(^3

2(^5

-iA2) =

+ iA6) =

-%Ae) =
1 a A \ ,—

a21 + a_i_2

— a 2 2 — (x_2_2

O_21 — CS_i2

= 6_2 1-61_2

= 62-2-6-22

= 6 1 2 - 6 2 1

= 2c_21,

= 2c2_2,

= 2c_n,

= 2c12.

(9-4)

Where c^B is the skew-symmetric part of bAB. We see immediately that the c given by
these expressions coincides with the matrix (9-3) above, as we expected.

If we now consider only the subgroup of rotations about the fourth axis, Ai becomes
an invaraint, and the components (Av A2, A3, iA6, A5) can be considered as a vector
in a five-dimensional space with metric (1, 1, 1, —1, 1), which was the space considered
by Eriksson. The last two equations become

in five dimensions, where / is an invariant.
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