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Summary. The generalization of the Dirac and quaternion algebras to Riemannian
spaces is outlined. The components of various elements of the algebras are interpreted
as physical quantities (tensors) and their symmetries and algebraic properties are
linked with the properties of the algebra. The generalization of the quaternion algebra
ig of particular interest in that it resolves the anomalies that arise in the usual identi-
fication of quaternions with rank two spinors. Algebraic expressions for the electro-
magnetic energy momentum tensor, the Ricei tensor and Einstein tensor are obtained
in both E-number and quaternion form. Extension of the principles to EF-numbers
yields a proof of the symmetry properties of Bel’s tensor and a simple expression for
itsdivergence.

1. Introduction. The mathematical relationships that describe the properties of
gravitational and electromagnetic fields find their most natural expression in terms
of the calculus of tensors. The gravitational field is in fact a phenomenon arising
out of differential geometric aspects of a four-dimensional Riemannian manifold
with signature — 2, while the electromagnetic field manifests itself as a rank two skew
symmetric tensor on the manifold. The invariance group for gravitational and electro-
magnetic relationships is therefore the group of general coordinate transformations,
and in this context the homogeneous Lorentz group has only very minor significance
as the symmetry group of infinitesimal neighbourhoods. The existence of spinor fields,
however, is evidence of a more intricate structure underlying physical law than can be
dealt with on the simple hypothesis of space-time as a Riemannian manifold. The
appropriate mathematical formulation of spinor relationships depends on the matrix-
algebraie aspects of certain Clifford algebras, and the Lorentz group is the invariance
group for spinor equations. Thus we have two conflicting aspects of modern Physics;
namely the differential aspects and matrix algebraic aspects. The two mathematical
disciplines have been developed rapidly side by side, while much has remained be-
wildering, and even apparently inconsistent, about their relationship to each other.
The present paper is an attempt to clarify the nature of this relationship, and at
the same time to indicate a means of dealing with tensor relationships by matrix
methods.

The defining relation for the generators e, of a Clifford algebra C, is the set of
anticommutation rules

desept+epe,) = =04 (a,b=1,...,n)
on & set of » quantities e,. The basis of the algebra consists of the 2» linearly indepen-
dent products that can be formed from the ¢,. We denote the generators of C, (the
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quaternion algebra or Pauli algebra) by o, ¢, and the base elements by ¢, (@ = 0... 3)
with oy = —i0,0,, 0y = 1. The Dirac algebra or E-number algebra is obtained from
Cy by a trivial modification of the above commutation rules—the Dirac matrices will
be denoted by E, (& = ¢... 3) and obey the relations
%(EaEb'i'EbEu) = gy = dg(l, -1, =1, —1).

The presence of the Minkowski metric on the right-hand side allows us to identify
real components of a general element of the algebra with physical quantities, without
the complication of ‘reality conditions’.

The prominent position of the quaternion and Dirac algebras in special relativity
is a simple consequence of the transformation law of an elementary spinor, whereby
a general quaternion p = p@, transforms as a rank two elementary spinor whenever
p° transforms as a Lorentz vector. Thus if A%, is the matrix of a Lorentz transforma-
tion, g the unimodular matrix of the corresponding spinor transformation, then

2% = A% p?  implies p — gpg'.
Rastall extended this identification of vectors and quaternions to a Riemannian mani-
fold(9). A similar, but more complex—and therefore more fruitful—situation holds for
the Dirac algebra, where the components of a general E-number transform as the
components of a scalar, a vector, a skewsymmetric rank two tensor, a pseudovector
and a pseudoscalar under certain spinor transformations of the E-numbers. This fact
was used extensively by Eddington (2, 3}, and further investigated by Kilmister (5,6).

The present paper demonstrates the possibilities inherent in extending this inter-
pretation of E-number components to a Riemannian manifold, by using the Tetrode
anticommutators (£, B, +E,E ) =g, Sections 2 and 3 deal with the algebraic
and differential properties of this relation, without reference to physical application.
In section 4 the results are used to formulate electromagnetism in an algebraic form,
and an extremely simple expression for the electromagnetic energy-momentum
tensor is obtained. The ideas concerning the Dirac algebra outlined in these Sections
are then applied to the guaternion algebra, but to achieve full covariance under both
types of transformation (change of coordinate system and Lorentz rotation of the
vierbein}, it is found necessary to introduce an arbitrary unit time-like vector into the
geometry. This procedure is also found to clarify some of the anomalies that exist in
the ugual identification that can be made between the quaternion algebra and the
algebra of rank two spinors. Section 7 deals with the Riemann, Ricci and Einstein
tensors by means of the methods developed in the previous sections, and in the final
section we extend the methods to the algebra formed from a direct product of two
Dirac algebras—the 256 component algebra of EF-numbers, first introduced by
Eddington(2, 3). An EF-number expression for Bel’s tensor, analogous to the E-
number formulation of the electromagnetic energy momentum obtained in section 4,
enables the symmetry properties of Bel’s tensor to be derived.

2. Algebraic properties of the Dirac algebra. (a) Generalization of E-numbers to
curvilinear coordinates. The Dirac algebra was first introduced into physics in Dirac’s
flat-space equation for a fermion,

(B0, — k)i = 0,
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where x = mcfh, 8, = 8/éx* and the coordinates x%{a = 0... 3,2° = ¢t) are Cartesian
coordinates. The description of such a particle in curvilinear coordinates and more
generally in a Riemannian manifold, requires the introduction of vierbein fields—a
set of orthonormal reference vectors k#, (¢ = 0...3 are labels that enumerate the
vectors of the set, # = 0... 3 are coordinate indices of their components) at each point
of the manifold. We suppose these vectors to vary continuously from point to point.
The orthonormality implies
h ah,ub = Nap»

h,uu hvu = G-

Such reference fields enable the special theory of relativity to be incorporated into
the general theory simply and naturally, and give an alternative description of
gravitation, in some contexts more natural than metric components,

The matrices B¢ (using #* to raise ‘vierbein’ indices) are regarded as constant
and invariant under both coordinate transformations and under Lorentz rotations
of the vierbein. They satisfy

1‘g:(}_,7/‘{1‘,‘!_71'1')_+_E'£1E;;'a) = ﬂab
and the complete Dirac algebra is given by the 16 base elements
1, Bo, B = JE°E*— E*Ee), E°=i{E°E'E?E® and K¢ = FeE5 = _ f5Fs,

Abbreviating E¢E*f° to E% we have

E15 = jF20,
B = 0
E35 = jE120
B0 = (s,
so that, in general,
Faeds — :;'71,”]&1) ebcdeECde’ (2,1)

where €, is the usual ‘alternating’ symbol.
The quantities we wish to deal with are the B* = A% B¢ which satisfy
YE B+ BYEr) = giv,
Similarly,
Err = h# b, % = HELEY - B*E®),
Defining & = det (A#,) = (det k)71, we have, from the well-known expression for
a determinant,
€abed = h_le,uvpo'h'uuhvbhpchgd (22}

and taking the determinant of h# g, h", = 7, We have

' = +(—g)}, where g=det(g,,). {(2:3)

The sign, once chosen, is invariant under Lorentz rotations of the vierbein and co-
ordinate transformations, provided neither type of transformation involves a reflexion.
We choose the positive sign. It is then possible by a continuous coordinate trans-
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formation to obtain locally Cartesian coordinates for which the h#, are oriented along
the positive coordinate directions. Substituting (2-2) and (2-3) in (2- 1) we have

E,s = b B% = —(1/3)) gke, , Ev=,
Now g is a scalar density of weight 2 and the Levi-Civita tensor densities ¢ Aovpr €P7

have weights —1 and + 1 respectively. We therefore define the alternating pseuwdo-

tensors 3
e)-upo- =g €rvpors

elvpor — ghéelvpo‘.i

Tt is then easily seen that they are the covariant and contravariant forms of the same

tensor, since ppT —
- gaygﬁvgypgdne - geaﬁ'y&'

The expression for E 5 is now simply
B 5= —~(1/3))e,,,, B, (2-4)
andsince £, E#= 4, By =—(1jd!)e,, , Ewre, (2:5)
We shall require an expression for the components of the elements £*#7 of the Dirac
algebra. From (2-4) we obtain
eVl = — (1j31) erabre,,  Ereo,
Now, ehaly Chpr = BI Sﬁ,ﬁl’”,
where 83/7 = 878787 and the square bracket denotes complete antisymmetrization
Aypot = 1/3!(anD' + a’pa’v + Qo — Qprp— acrpv - apvo')'
Hence e#“ﬁ'?E‘us = — Blapyl = 1/3Y — 6By + 6(g7FE=— g*vEf + g BT},
where we have made use of the anticommutation rules. We finally obtain
BBy = gmﬁv#Eﬁ_FgaﬁE?_gvaEﬁ+gﬂwEa_ (2-6)
(b) Identification of components with vectors and tensors. We require that a general
E-number
P= p+ngﬂ+ .%p#uE#P+p#5EF5+p5E5

shall be invariant under coordinate transformations, and that under s Lorentz
rotation A% of the vierbeins (A*, = A 7h#,) it shall transform to QPQ !, where Q is

iven b
g y E, = AQE,Q,
This ensures that p, p,, p,,. 5 and p; are respectively the components of a scalar,
a vector, a skewsymmetric rank two tensor, a pseudovector and a pseudoscalar. The

most important E-numbers for our purposes are those of the form x = z,E* and
f = 1f, E*. The scalar product of two vectors is then given by

Gt Y = 2, 9" = Hay +yx), (27
where =z, y=y, B~

T More explicitly iy/(—~g) €,,,, 8nd 1fi\/(—g) €17, with the positive square root.



Clifford algebras in general relativity 789

The components z, are obtained from « by

x, = WE, x+zk)) (2-8)
or, since all the base elements of the algebra except the unit matrix are traceless,
@, = jtr (B, ). (2-%)
The quantity x, f«*is given by
z JPH, = Yaf - fx). (2-10)

Equations (2-7), (2-8) and (2:10) are all simple consequences of the anticommutation
rules,

(¢) Duals of skewsymmetric tensors. The dual of f# is defined to be

f*"w = %eﬂvpdfpa‘

If we define the covariant dual f* w = $€u00/77; then the operation of taking the dual
clearly commutes with that of raising and lowering indices. Defining the E-number
E*urby

H¥py — %eprpa‘Epw
we have, for f» = }f, Ew, '

if* B = If, B*wr = f*
and BeE*er = § B epow R,
= %E‘“(EP‘T#__ ng'Eﬂ +g.upEfr —_ ga‘#Ep)
= Kre
(where we have made use of (3-6) and the identify E, EreE# = 0). Thus, in the E-
number algebra, the dual of a skewsymmetric tensor is given simply by
f*=E.f=[E,. (2-11)
(1) Expressions for certain components of a general E-number. A general E-number
P can be written P=piqirtstt,
where p=4itrP, g=p, B r= ipu Er, 8 = p B, t = p ES.
Wehave p,=3}trE, P, p,= ek, P,

etc. (see Eddington(2)). Now, for a ‘pure vector’ E-number (i.e. P — q) we found an
alternative expression for the components (2-8), namely p, = {¥,P+ PE,). We might
expeet this to be a special case of more general expressions for components of K-
numbers. To obtain such expressions, we evaluate the quantities

Q= B*PE,, R—3ECPE,, S=F“PE,, T HPE,
and obtain P=piqg+rrs+t,
O =4p—2q9+2s— 44,
B= —6p+2r—6t, (2-12)

8= —dp—2¢+2s— 44,
T =p-—gitr—s+t.
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Solving for » by Cramer’s rule
p=ttrP=%P+Q-R-S+1T. (2:-13)F
Using (2:13) on the E-number E, P instead of P, we find
{trE P = {(E P+ ErE PE,— }E°E PE,, — EE, PE,;+ E°E,PE;)
= B, (3P -Q—-R—-8~-T)+(2P-2Q-2T)E ),

where use has been made of the anticommutation rules. The same quantity can be
expressed as

e PE, = {3P-Q~R—-S—T)E, +E (2P -2Q—2T)}.
Adding,

P, = gl—ﬂ;{EF(.‘SP—SQ—R—S—3T)+(5P—-3Q—R-—S—3T)E#}, (2-14)
which gives a means of picking out the vector components of a general F-number, which
does not depend on the expression p,= itr B, P. Note that (5P—3Q - R—S-3T)
13 16g as can be seen by solving (2-12) for ¢ using Cramer’s rule. For a pure vector
quantity P = ¢ and the expression (2-14) reduces to (2-8).

In the same way, we may derive an expression for P,—the tensor components
of a general E-number. Using (2-13) with E w P instead of P,

p‘uy = i‘trPE.uv = T].E{(P-i'Q_R"S+T)E.uv+2Eu(P+Q+T)E.u
+2E(P+Q+T)E, + «E,P+PE ).
Expressing the same quantity as }tr £ P changes only the first term which becomes

E (P+Q—-R—-8+1T). Adding the two expressions gives an expression for the
tensor part of any E-number

Py = glf{Ew(QP+Q—R—S+T)+(9P+Q—R—S+T)EW}
—%{E#(P+Q+T)EP—E,,(P+Q+T)E#}. (2-15)
For a skewsymmetric tensor quantity P = 3p wE* = r we have
9P+Q—-R—-8+T =8P,

P+Q+T =2P,
and the formula reduces to

Pu = i;(EWP+PEW—EFPE,,+EPPE#), {2-16)

which is an expression for the components of an Z-number containing only a tensor
part, completely analogous to (2+8) for an F-number with only a vector part.

3. Differential properties. (a) The differential operators. So far we have investi-
gated only the properties of the E-number algebra. at a point; we now turn our atten-
tion to the differential calculus that arises from a field of such quantities. We have
three distinet differential operators:

(i) &, = ¢/0x, the ordinary partial derivative, which may be combined with the
E-number to form an operator Erg, = 0 operating to the right (or ¢, ¢ operating to
theleft).

1 Eddington’s F-numbers differ from those used here by a factor +¢ which would give
P =HEP+Q+R+8+T).
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(ii) For covariant differentiation, we may fix the vierbein so that the requirement
of invariance under Lorentz rotation is relaxed. Vierbein indices and the spinor
indices labelling the rows and columns of the E-numbers are not subject to trans-
formation laws. The appropriate covariant differentiation is then denoted by D,. Then

D[LEG' = (D,uha'a) Ea: = (ap:hu'a— Fp_uahap) Ea
= Ea‘yaa’,u = Epypo',u’ (3:1)

which may be taken as the definition of the spin coefficients y,,,. Their skewsymmetry
in (po) then follows from

0=D,9,=3D (B E,+ B B) = YoputVpop

(iii) The complete covariant derivative which takes account of vierbein and spinor
indices as well as coordinate indices:

V=29 -I,9,
V.p=202,6+¢0,
where 1 and ¢ are a covariant and a contravariant four-component spinor, respec-

tively. The I', are a set of K-numbers (the spinor connexion). The general covariance
of the Dirac equation (E#V ,— k)1 = 0 then requires that

V.E,= D#EO.+E!,I‘#—I‘”E,. (3-2)

The operator E#V ,, operating to the right or left, will be denoted by V.

The quantities I", are not uniquely defined-—we only require their transformation
law to be such that (¢,— L'} is & vector under coordinate transformations, and a
spinor under Lorentz transformations. We can fix I', by the condition that

B,,=V,B,=0, (3-3)
which is analogous to the requirement ¢,,., = 0 to fix the components of the affine
connexion. We then find Boy,,, = — BT, + T,EB, (3+4)
80 Ypou B = —E, T E7+4T,. (3-5)
Writing r,=a,+e, B+ Ya,,, B7+a,,s B0 +a, B

for the components of the spinor connexion and using the relations
E E" =4, E _ErE° = —2E», E E~E’=0,
E_EwsEe = 2B, E_E°E" = -4E%,
equation {(3-5) implies that 2a,, = V,,. ¢, can be chosen arbitrarily, and the rest

of the components are zero.
Thus I =1 +a, (3-6)

A ‘curvature spinor’ M, is a spin-tensor obtained by operating on a covariant
spinor with the commutator of two complete covariant derivatives, i.e.

(Vp:v - Vv,u) ‘r/f = M,uv ]ﬁ
We obtain M, = 8,0 =8, )+ 1T =T T\ +f,, (3:7)
30 Camb, Thilos. 63, 3
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where =4, and f,=0,0,—8,a

ae
The spin coefficients vanish in a flat space with Cartesian coordinates and a natural
vierbein, so that the covariant derivative operator for a covariant spinor in this case
becomes (9, —a,}, which is just the modification that the operator 8, of Dirac’s equa-
tion undergoes when an electromagnetic field is present, if o « 18 Interpreted as ied [fic,
with 4 the electromagnetic potential. On this basis it is possible to identify

' f,uv = ]};t’rM#v
of (3-7) with the Maxwell tensor.

4. Electromagnetism. The Maxwell equations can be written

8f oo =0,
Frpio (4-1)
fm_p = jﬂ,
where § indicates summation of the three terms obtained by cyelically permuting
(upa);
upser =f#P;‘7+fP31F‘+fU#:P'
Now §f,,., = 01s equivalent to frer, =0,

s0 making use of (2-10) these can be written as
HVf*-f*v) =0,
Y —FV) =,

where j = j,E* Since f* = ESf, the first of these equations is equivalent to
$(Vf+£V) = 0 50 in our formalism the equations (4-1) are

Vf=j=—I%. (4:2)

The electromagnetic energy-momentum tensor can be defined as the quantity 7'#*
whose divergence is the Lorentz force

T.uu - _fo‘y 3
. . . . e @
In our matrix formalism, thig is

(T8, ,=f7),B°
= 3(fj— i),
where we have used (2:10), But making use of the Maxwell equations in the form
WRVSI LN+ (VN = JUB, ., BoF) = G,
Thus the energy momentum tensor may be defined by
T g, = LfEH. (4:3)

Its symmetry and the vanishing of its trace can be obtained at once by multiplication
by £, making use of the identity B, ErsEx = 0:

§(Tw—-TE, +1°, = E E,Tr = }E fE'f = }f, E E"Erf = 0,
hence Te =0, Tw =T (4-4)
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The usual expression for T# can be obtained by repeated use of (2-6) to evaluate the
components of fE, f. Tt is simpler to obtain a matrix formulation for

f,tw'.fuo. - %g,uvfmﬂfaﬂ (45)

and hence to show that this is the above tensor. (4-5) can be rewritten as
%(fpv'fuﬂ-'_f*#af*vg)a

50 we require an expression for f,.f,” where f,, is a skewsymmetric tensor. Writing

f = Afpfirwo have YB.f~FE.) = fu B* = o
Using (2-10) with f, for x and &, for f,, we have

ok E, = Hf.k—kf,) = HE fk— kE f—fE k+EfE ). {4-6)
Thus [ B, = Y2fE f—-f*E,— E f*) {4:7)
and f*, f*7E, is the same quantity with freplaced by Ef or fEg. Subtracting the two
expressions, Yoo = uf ") By = MBS, (4:8)
which completes the proof that }fEf does in fact yield the usual energy momentum
tensor; Tw = itrE, fE.f.

In section 8 an extension of the method enables us to express Bel’s tensor in terms of
EF-numbers, and thence obtain a simple proof of the symmetries of Bel’s tensor.

5. Generalization of the quaternion algebra. (a) Algebraic properties. Before we can
make use of the quaternion algebra, we must resolve the inconsistencies involved
in the usual identification of quaternions with rank two elementary spinors (see for
instance, Ellis (4)).

All four of the Dirac matrices anticommute, so that the four vierbein indices of
K, E2, B3, E® are on an equal footing—consequently (defining E# = h#, E%), the ex-
pression for any product of E-numbers in terms of the basis is completely covariant,
for Lorentz rotations of the vierbein as well as for coordinate transformations, e.g.

Furve — e,mu;rp_Ep5 + g,qua — go‘,uEv + gvaE,u_

The situation for the quaternion algebra is rather more complicated, for o, 5, and o,
anticommute, while oy = 1 commute with the other three. Thus time is singled out
from the three space directions, so we cannot expeet invariance of quaternion expres-
sions under Lorentz rotations that involved the time-like vierbein £#,. The situation is
further clarified by considering the actual transformation laws, Under a Lorentz
rotation the E-numbers undergo a transformation of the form

B QE,

where @ is determined by the requirement of invariance of the E¢. Thus any product
of E numbers has the same transformation law

Hrov QE,uvo'Q—l R

50-2
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The quaternions, however, transform according to
ok — qorgt,

where ¢* is the Hermitian conjugate of ¢ (i.e. as a rank two spinor with one ‘undotted’
covariant index and one ‘dotted’ covariant index), where g is a unimodular matrix
determined so that the o2 are unchanged. Thus, unless g is also unitary, the products
of o-matrices do not have a sensible transformation law. ¢ is in fact unitary only for
the spatial rotations—those not involving the fourth vierbein A%,

The quaternion conjugate to p = p,0” is usually defined to be that formed by the
inversion of the vector p, in the 3-space determined by A#h% (k = 1,2, 3), i.e.

T, =—0, (k=1,23),
Ty = 0.

This definition of 7 is therefore dependent on the choice of vierbein, so that p is not
the same kind of quantity as p. It has a different transformation law. Usually the
transformation matrix g is considered as a quaternion, its unimodularity is expressed
by ¢§ = 1 and the transformation law of p is then
P—>q'pq, (6:1)
so that products of the form o#G* can be considered, as they possess a spinor trans-
formation law
oFFY > qorErg.

However, this interpretation is not valid, since ¢ is a spinor transformation matrix
and therefore has two undotted indices, so that it cannot properly be expressed as a
linear combination of the ¢#. The quantity ¢ can therefore not be defined in a covariant
way.

The way out of these difficulties is clearly to convert the ‘dotted’ index of the
elements o# to an undotted index by multiplication on the right with a matrix ¢
whose transformation law is

¢ — g 1cg1,

Thus we define 8k = g#g, (5-2)

Then S# — qS#¢~! and products of the S-numbers (which we now call quaternions)
can be formed. We define the “special’ vierbeins to be those in which € is the unit matrix,
In these frames the § numbers are the usual quaternions and the structure constants
defined by SHSY = oron, (5-3)
are the usual structure constants of the quaternion algebra. In any other frame
¢ = s's, where s is the matrix of the transformation to a special frame. The special
frames are therefore mapped into each other by the unitary unimodular rotations—
i.e. by ‘spatial’ rotations, and therefore a chosen set of special frames is characterized
by a specified time direction at each point, or by an arbitrary chosen unit time-like
vector field ¢#, This is the A#, of the special frames, so that ¢, = (1, 0, 0, 0) in these
frames and ¢, o is the unit matrix. In any other frame related to the special ones by
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a transformation matrix s, €' = ¢ 1s"1 go that ¢ = ¢! in any frame. Given a quater-
nion p = p,S* we may define the conjugate to be the quaternion obtained by space
inversion of p, in the special frames. Thus
Bu= —Pu+2p,p,¢
Laiiciat (54)
or 8,=-=8,+2¢c, J

where we have used S,¢* = o,¢” = ¢c¢ = 1. We now have a definition of quaternionic
conjugation that is independent of the choice of vierbein and moreover the trans-
formation law of S, is the same as that of 8,. It is convenient also to define the conju-
gates of the Pauli matrices o, by the relation

8, =c7, (5:5)
In the special frames this yields the usnal definition of the o,. Since a transformation
matrix ¢ can be written as an S-number ¢,8# we have
97 = 9,9,5"8” = $4,4,(5+8> + §*8¥)
=069 = 4,9%

and evaluating the determinant of ¢ in the special frames we find g,¢* = |¢| = 1.
Thus g is the inverse of a unimodular ¢ and the transformation law for the &, deduced

from (5-5) can be written e =
T, = 7.4

Thus the &, are the usual @, representing reflexions relative to the particular vierbein,
for they take the same constant values for all frames:
T > ALTg = A4 = T
We may evaluate the completely covariant structure constants defined by
8,8, =¢c,,, 8"

The ¢,,, are evaluated in the special frames from the usual multiplication rules of the

Paulimatrices g ¢ _ e 8648, =—8,5, (i.j=1,23),
8p8; =8, = 8; 8,
S =L
These formulae can be combined in the single expression
B8t = jeebed S 4 §0a8h 4 f0bGa_ pabQ0 (g, b =0...3),
ie. 848t = gabed ¢, 4 cuSh 4 cbFa _ yabgo,
or, in coordinate indices,
Se8Y = ertve§ ¢, 4 c#S¥ + P8k —give, 8P,
Hence CHPY = eRPYTC - qEPCY — gYiCP 4 gPYcH, {5-6)
which is a fully covariant expression, true for all frames (except of course under

reflexions of either vierbein or coordinate systems, for which ¢##*" undergoes a change
of sign).



796 E. A. Lorp

We may also evaluate the structure constants for the multiplication 843 as follows:
SHSY = — oS, + 20°8k = (— cuer 4 2g000) S, = cPES

We will also require the quaternions S# = 1(§#8» — §*8#) which are in a sense ana-
logous to the E of the Dirac algebra, except that they can be expressed as a linear
combination of the generators S,:

8w = gperS,
= H{errr — cror) Sp
= ePrvog 8P4 Segh — Svck
= (e +gur7) S, (57)
where g0 = ¢4,9,0 = 9 4. Which is the dual of e,,,, over one of its index pairs.

Incidentally we note that g,,,, has the same algebraic symmetries as a Riemann
tensor and its trace is zero. Any guaternion of the form

K = 3,90
K= (f,uv +f*[w) Sker, (5-8)

A similar expression involving the antiself-dual part of f,, is obtained by noting that
the S, are Hermitian in the special frames (where they are just linear combinations
of the Pauli matrices, with real coefficients) thus in general, in all frames,

oSle =8, (59)

can be written

If f, is real, f*,, is imaginary so combining the expression (5-8) with (5-9) we obtain
cK'e = f‘,w —f* ) S, (6-10)

From the expression (5-7) for the components of 8, it is apparent that 8,,isa ‘pure’
quaternion, thatis, B
8 24 +8 e
Thus every quaternion of the form K = }f,.8%* is “pure’. We also have the converse,
that every pure quaternion K = K 8# can be written in the form K = } fuS#. For,
if K is pure we have K + K = 0 which gives K ,¢* = 0, so

K c, 8m = K, c,c,g#°°8,
= K¢S, — Kec, = K.
Hence K has the form }f, S#*, where f,, = K, c,—c,K,.

(b) Differential properties. Having modified the concept of quaternions so as to
eliminate the anomalies introduced by the usual identification of quaternions with
rank two spinors, and investigated the algebraic properties of the quantities 8,
we are now able to deal with the differential properties. These will involve the
differential properties of the vector field ¢, that we have introduced, so that the
quaternion treatment of differential geometry departs significantly from the formula-
tion in terms of the Dirac algebra which we investigated in section 3.
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An elementary spinor possesses one of four possible transformation laws, and
each type of spinor has its own law of covariant differentiation. For convenience
we list the four transformation laws with their appropriate covariant differentistion:

(i) {b‘*ﬁ'ﬁb, ¢;,w=a,u¢_r,u¢’
(i) ¢>¢g, ¢.,= o,9+90, (5+11)
(iil) ¢ > @g', ¢, =28,9p—9T,
(i) ¢ >¢'79, ¢, =8,6+T,0,
where T is the elementary spinor connexion, with the transformation law
Py—qU,gt+q,07q. .= 2,9),
so that the matrices I', can be expressed as quaternions,
r,=4,8,

where £, is a tensor under coordinate transformations and, under Lorentz rotations
of the vierbein,
ﬁﬁw - ﬁ;w + GvQ.,uq_l'

The covariant derivatives of the o, and 8, are respectively

Fuso = Dﬂa-ﬂ_Fpo'#—G#FI’
and
Sﬁ;p = DpSF—l"pSﬁ-l—Sﬂ I‘P.

The second equation is unchanged if the I' ) are modified by the addition of an arbitrary
vector multiple of the unit matrix a,, as was the case for the Dirac spinor connexion.
The first equation, however, is unchanged only if @, is imaginary.

The operator D, implies differentiation of the o, and 8, as vectors, without regard
to their spinor indices. Since the o, (0, = k,%7,) are the constant Pauli matrices in all
frames, we have

D6, = Ve, %
where the y,,, are the same spin coefficients that were introduced for the Dirac
algebra. We may also obtain D,7,, D,S, and D 8, in terms of their components in

P
the appropriate algebras. For instance,

D,uc = D#(cao‘“) = (ca;ﬂ+cﬁy“ﬂ#) o*

and
D= —e(D,e)ec

= — (Coy u+ CPY0p,) CO%C.

But to*¢ = — o>+ 2¢c,, and since ¢* is a unit vector, c%c,, , = 0, so this reduces to
D= (c,.  ,+Vu)T%

# asu «fp

Then
D‘uSv =D (o) = 8*y,,,+{,,070%

where

Ccz.u =Cyiut cﬂ‘yﬁﬁ#'
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Making use of the fact that ¢,7, = 8,8, and §(5, S, +8,8,) = ¢,, we find that
D#SV = ijSv+cv;,u
= Sa?’ﬂy + X JaEv’
and that L S
D.uo'v = D‘u(GSv) = o‘m‘y‘zv,u'*' 2c* ga:,u
= Ea‘yal"ﬂ'

To obtain an expression for the spinor connexion I', we can set either o,,, =0
or 8,.,=0. The second choice, however, leads to the severe restriction ¢,,, =0
on the vector field ¢, since ¢,8” = 1 implies ¢,, , 8 +¢,8”;, = 0. We therefore apply
the first condition

crv;“=0

in the same way that E,; = 0 was used to specify the components of the Dirac spinor
connexion. We have
Tpip = 0Yy—T,0,— 0, T, = 0. (5-12)
Writing
L, =p5.8"

for the components of the I, from {5-9),
I, = po,e8e,
where x is complex conjugation. Equation (5-12) yields, on multiplication on the right
by o,
0 = o%5vy,,,— 41", — B, 0,68%0"
= S“v‘}’av,u - 46;;&8“ - ﬁaSuSGSV'

But 8,828” = 4¢2, hence
0= Sav?rxv,u—4ﬁ.ua8a_4ﬁﬁmca'

Taking the quaternionic conjugate and adding,
(ﬂﬂa + ﬁﬁa) c* = 0:
i.e. the quantity §,,¢® = a, is imaginary, and the elementary spinor connexion is

F,u = %SaVYav#_i-a/u (5-13)

which bears a striking resemblance to the expression for the Dirac connexion in
terms of E-numbers. From this treatment, however, we have shown that a, is neces-
sarily imaginary. In the Dirac algebra treatment it was an arbitrary complex vector.

6. Relationship between the Dirac and quaternion algebras. There exists a close con-
nexion between the Dirac and quaternion algebras, arising from the fact that the
Dirac algebra is a direct product of two quaternion algebras. Thus every formulation
of a mathematical or physical relationship in terms of A-numbers (for instance, the
electromagnetiec relations obtained in section 4) has a closely associated quaternion
formulation of a similar type, that is equivalent. The Weyl representation of the
Dirac algebra appears to be extremely appropriate and useful in this context, as
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it provides a means of obtaining, from any E-number relation, an equivalent quater-
nion one. This fact is demonstrated in the present section and applied to the electro-
magnetic equations of section 4. In section 7 we then deal with what is in fact the
central object of the paper—to show how the matrix methods evolved here may be
used to simplify manipulations of tensor equations, in particular those tensor equa-
tions that arise from considerations of the gravitational field.

The Weyl representation of the Dirac algebra is given by the set of 4 x 4 matrices

ey
E = # =0...3). {61
=5, ™) @m0 ®1)
We see immediately that the &, are constants, that E v = 0 follows from o,,, =0
and that the four matrices satisfy
%(E}JEu-i_ EVE,H:) = g‘uv!

so that they do, in fact, generate a representation of the Dirac algebra. We find that
the Ex undergo the transformations

E,~QE,q, Q=(q q,) (62)

whenever the ¢, undergo the Lorentz rotation q. E; is represented in all frames by

and we find
E = (%(U”EV—O‘UE#)

i

%(E‘ugu—auo-,u))

- (5 o) (63)

where the " implies that the transformation law is S #: - Q‘*Sﬂlq*, although of course
in the special frames the S, are skewhermitian. Thus any E-number of the form
f = §f,, E# is represented by

1=(" _g) K=K< e

which enables us to write down the electromagnetic equations (4-2) and the exXpres-
sion (4-3) for the energy-momentum tensor in terms of the quaternion K. The Maxwell

equations are .
d f,rw:,oS'aS#y=f,lw;pSp#Sp=J,uS‘u’
and the expression T.8"=3%}fE.f
gives
T o"’) 1 'K ) 0"“) (K ) 1 —chrﬁKT
w gy _2( -K'/\7, . K _Q(MK*E#K )
1.e. T.0" = —$Ko K. (6-4)

Defining the ‘complex conjugate’ of a quaternion K = K «S* to be the quantity
K» = K% 8¢
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{i.e. the basis elements of the algebra are regarded as real), then K= has the same
transformation law as K, and from (5-8) and (5:10) we see that

cK'c = K=,
Substituting in (6-4) we obtain 7,8 = — }K8, K=.

7. Gravitational theory in terms of the quaternion and Dirac algebras. () The Rieman-
nian tensor and the curvature spinor. It is convenient to introduce the Riemann tensor
into the B-number formalism by demonstrating how it is involved in the spin-tensor
M, introduced in (3:7) in connexion with the commutator of two covariant derivatives
of a Diracspinor. A covariant Dirac spinor i transforms to @y under Lorentz rotations
of the vierbein for which E « > @E,Q. Thus an E-number may be regarded as a
rank two Dirac spinor with one covariant and one contravariant spinor index, and
the covariant derivative of an F-number g = a, B, is given by

Vﬂa = aﬂa— F#a+a1‘#,
and the commutator of two such derivatives is a spin-tensor, given by
(V,— vV, )a = JWFVa—aMW.

On inserting the spinor indices the close connexion between this equation and the
corresponding equation

(Vv
for a rank two tensor, and the consequent analogy between M,, and the Riemann
tensor, becomes at once apparent. Since a pisavectorand £ ., = 0 we can also formu-
late the commutator V;,,, as follows:

(Vﬂy—Vm)a = E"(V“VP—VVV#)GD,
=HKE°R= g

[T - 1)

e Vu,u) a,’ = Rap,uv a’pﬁ_' a’a'oRpﬂ‘uu

and the right-hand side is seen from (2-10) to be
E°R. = o, = HK, ,a—aK,),

v e
where K, =1iR,, Er. (7-1)
Thus (M,av - %Kyv) a— G(M,uv_ %va) =0

for any E-number a of the form a ¢ Hence M, — K, commutes with the F-number
&, and so with all the E-numbers. It is therefore g multiple of the unit matrix. But
tr K, = 0and tr M, = f,,, so we have

M, = %Kﬁﬂ +f..v.m = i"RyvpaEpd'f_fpw‘

iy

We shall use the F-numbers K w and the associated quaternions

K, = iR, SPC

to formulate gravitational expressions in terms of the Dirac and quaternion algebras,
taking as a guide the methods we used to formulate electromagnetism in terms of f
and A,
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(b) The Bicci and Einstein tensors. The Ricei and Einstein tensors have very simple

E-number expressions. Defining
R, =K, E¥,
wefind
B, = §R e B = §R,, o(gr°BP —gi0 B”) = R, Er.

v po

The E 5 components vanish due to the cyclic identity. By virtue of the same identity
R, = E*K,,.
The curvature scalar follows at once from
RE”= R, ErE” = R _g* = R,
80 that the Einstein tensor G, is contained in
G, B = (R,—1g, B)E* = R,— 4R, E"E,

= B*(9,,—~3E,E,)

=iR°E E, = }K/E .
We thus have the following quantities which specify the Ricci and Einstein tensors
in terms of F-numbers:

R, Er=K, E*
" .l } (7-2)

G Bt = {Kr°E,,.
The expression K, E# can be written

K, Er = AER

wap it = $ED LB,

which is essentially the expression for the Ricci tensor obtained by Newman and
Kilmister(7).

Quaternion expressions for the Ricei and Einstein tensors. We can decompose equa-
tion (7-2) for the Ricci tensor into two (equivalent) quaternion expressions by using
the Weyl representation of the E-numbers. In the Weyl representation,

K
e ()
i ~K,}

o K, at
o )= k) o )

which gives expressions for R, o and R, o taking the quaternionic conjugate and
the Hermitian conjugate of the second expression (and noting that o, = AR
KW =—K,), wefind

so that

R, ot =K, o }
B, ot = orK, .
The same two expressions follow from R, E* = ErK, ..

To obtain the quaternion equivalents of the formula (7-2) for the Einstein tensor
we expand E , into its components thereby demonstrating that @, is in fact the

pro
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trace of the double dual of the Riemann tensor, just as B, is the trace of the Riemann
tensor itself. Thus ¢, B = 1K, ,

= 1Kro(—eg

oA

E:\E),
the other components vanish due to the skewsymmetry in (po). Therefore
G.quv = (*K,uh) Ex,

where *K ,, = *R,,,,, E*#, the star on the left of the Riemann tensor indicating that
the dual has been taken over the left-hand index pair (#A). Similarly E*,,, ,indicates
a dual taken over (af).

*K®, = §*R* . Bof = }¥R Bt = K, B,
therefore G E” = *K*, E\ (7-3)

Comparing this expression with the analogous expression for the Ricci tensor {7-2),
and noting that the double dual of the Riemann tensor has the same algebraic sym-
metries as the Biemann tensor itself, we have shown that the relationship between
the Einstein tensor and the double dual of the Riemann tensor is the same as that

between the Ricci tensor and the Riemann tensor, &, is therefore the trace of *R*, .

Go.=R,— 3G, R="*R¥ 7 (7-4)
The gquaternion equivalent of (7-2) follows immediately:
Gﬂv ot = *K*A#O-A,
where *K*,, = }*R*, ,,5°/. Since Sf is self dual the right-hand star can be omitted.

Thus G, 8% = *K, A, (7:5)

(¢) Analogy between K, and f,,. The quantity K, appears to be analogous in some
ways to the electromagnetic quantity f,,. If the analogy were complete we would ex-
pect the gravitational equations to be the Maxwell equations (4:1) with K, in place

off,,. The equations ’

SK,,.,=0
Ko, = Jﬂ} (7-6)
have in fact been put forward at various times as a possible alternative gravitational
theory to the one based on the Einstein equations. The semicolon denotes complete
derivative. See, for example, Lichnerowicz (8}, Kilmister and Newman(7) and Bel(1).
The first equation is an identity—the Bianchi identity. The second is a set of third-
order restrictions on the metric, which in empty space (J# = 0} include Einstein’s
equations. That is, K¢#  , = 0 whenever R, = 0. The quantity J#, unlike the electric

current j#, is not a multiple of the unit matrix but is an F-number
Jw = JurE,, = }R, v~ Eeo. (7-7)
Making use of the Bianchi identity gives the alternative expression

JH %(R#P;U_R#a;p)]j}w_
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We have
V#Jn“ = %VWRW

= ?}(V,uv - V‘uv) Rpa‘p'“Epcr
= %(ngyﬂszv.u, + Rpav.uRo’av.u - Rum'MRm,u + Rpﬂ'vacw) E_oa"

v oo

The first two terms in brackets are symmetric in (po), while the second two vanish
because the Riemann tensor is skew in its final index pair, while the Ricei tensor is
symmetrie, Hence J# obeys a continuity equation

v, Jr =0,
or v, J#r = 0, (7-8)

The cyclic property of B#*7 implies also a similar property on J#;
S e = 0.

Combining this with the continuity equation (7-8) and the skewsymmetry in (po)
gives the continuity equation

V,1#=0 where I*=.JeorE,

8. The EF-number algebra. (a) Ricei and Einstein tensors. The E-numbers may be
regarded as formed from two mutually commuting quaternion algebras, or as linear
functions of quaternions. In a similar way we can construct an algebra from two
mutually commuting Dirac algebras, which is a modified form of C,. We take a set of
quantities ¥ ,, F,, with the following multiplication rules

UE“E» + E2Br) = o = Y(FrF» + FrF),
EtEr = EvFe,

A representation can be constructed from 8 x 8 matrices by Kronecker products on
& 4 x 4 representation of the £-numbers. Thus

Et=(Er®1), Fr=(1@® EK.

The identification of components of Clifford algebras with physical quantities is now
less restricted, since the £#F” component of a general EF-numberis a tensor of rank two
P,,, we are no longer restricted to skewsymmetric rank two tensor as we were with the
single £-number algebra. The algebraic properties of an E-number of the form

P=1P, EwFes

ppo

are of particular importance, for the tensor P, ,, is skewsymmetric in its index pairs

(#v) and (po). If it is also symmetric under interchange of index pairs this fact is

equivalent to the invariance of P under the interchange of the roles of B, and g,
We form the quantity

K=1Rr,  EwFer (8-1)

v pa

from the Riemann tensor, and also define

I = gF,,En“F" = E#F""
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from the metric tensor. Then
1K = {R po(E*PF, ;)

= ¥B, 7 B + 290 E") (e, F*5+ 29, F,)

= R, po(~ 318,50 B, Fx$)_R,_E* ¥,
where the terms in B, *?e,, . etc., vanish by virtue of the cyclic identity. Now,

3185, R, 7= —20 R+4R A,

50 we have IK = - (R, — g, R) Er5F» — R, ErB,

and we also note that 1K = KI is a consequence of the cyclic identity. If we denote
by *K* the quantity analogous to K formed from the double dual of the Riemann

tensor, we have *K*=F . F.K = KEF,
80 IK = -G, ErF*— R, ErFv, g0
I(*K*) = -—RF,EFEF’*—GWE‘I‘F”. } (8:2)

We note that the roles of the Ricci and Einstein tensors are interchanged when
R, is replaced by its double dual. This fact was indicated in the treatment of the
Einstein tensor in the previous section, but here in the context of EF -numbers it
finds its full expression as a consequence of the algebraic properties.

(b) Bel’s tensor. Bel(1) introduced the tensor

T;Apuo' = %(R,uezvﬁ R,aau-ﬂ - *Rﬂavﬁ*Rpua-ﬁ - R*,wuﬂ R*paa-ﬂ + *R*yavﬁ*R*pao'ﬂ) (8'3)

in connexion with the energy density of the gravitational field. The algebraic proper-
ties of such a tensor are tedious and complicated to deal with if the only mathematical
methods used are the usual manipulation of tensor indices. We show how the E-
number method of dealing with the electromagnetic energy-momentum tensor
can be extended to deal with a rank four tensor by using EF-numbers. The tensor
that we would expect by direct analogy with (4-6)is in fact Bel’s tensor, and the proof
of the various symmetry properties is greatly simplified.
By analogy with (4-3) we are led to consider the EF-number

KE VK = TIFRaﬁyJRx).pu'(Eaﬁ'“A) (Fyavpcr)
= "l%Ra,ﬂyv! Rx.\po-{(eaﬁ#aeax Ab + 4919#9' g Ab) E b
+ {Qea,ﬁ‘,mcg:\b + ggﬂ,ueuuclb) Ebs} (Fjr&‘vpa-)
= i(Ra:‘u,yﬁRaApa- - *Raﬂyé*Raﬂpv') EA(FYBDPU)
+ i(RaﬂyJ*Rm‘pa' - *ch,u'yd‘ Raﬂpo’) EA5 (F'yﬁvpo‘)’
so that, if the F»"7 were also expanded by components, we see that K E*F*K would
contain only K, F,, E,;F,, E, F,; and E,;F; components, the component associated
with £, F, being the 27, of (8-3). The trace of an EF-number in a 16-dimensional
representation is obtained by regarding the E 8 numbers and taking the trace as an

F-number, and then taking the trace of the resulting 4 x 4 matrix (E-number).
We can write tr P = tr ;(tr z P). With this convention, we have the following result:

Ton=dstr B, F,KE, F K. (8-4)
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The symmetry under interchange of index pairs, (Ax) with (u»), follows immediately
by cyelically permuting the matrices on which the trace operates. We may also inter-
change the B-numbers with the F-numbers. Under this operation K is invariant so the
net effect is to interchange the index pairs (Ax) with (k). This establishes the following
two symmetries of Bel's tensor:

T,luilwc = T/\,uxw (8'5)
T,u/\wc = faw,uf\' ’ (8'6)

Proof of the symmetry in (vx) is as follows:

Tykvx = ilf . TIB' BBy Babed tr (Eyaﬂxlabﬁ:vydxcd) tr (Epaﬂ).abﬁ;yﬁxcd)
= tr g(B o pran) 1w F,502),
and the part of F, ;,., that does not vanish when multiplied by R=#7? Rabed ig

(evyd‘pr5+ 29»]:1;:5) (excdoFaa + 2gchd)’

and the part of this quantity with non-vanishing trace is

—€, yép e’ + 49V}- Jeclsas

which, when multiplied by a quantity skew in (y8) and in (¢d) is equivalent to

- 29’»x9'yc9m + 4gx-ygvcgdd + 4gvy Fedsa

which is symmetric in (vk). This establishes the symmetry
T,u,lvx = T,u).xv‘ (87)

The remaining symmetry property, symmetry in (uv), will, together with (8-5),
{8-6) and (8:7), be sufficient to establish the complete symmetry of Bel’s tensor.
This symmetry is, however, only valid if the Riemann tensor satisfies the Einstein
equations. The proof follows. Let F, ,, be the E#5F¢ component of 3K E &, K. Then,
treating }K& F, K as an F-number, the E, being regarded as (non-commuting)
numbers, we have

stre(E,KE, FKY="T, Er+P , E

hpve rpvT
Now 4Bt (F,KE,F,K) = 4y tr (E°F, KE,F,K)

vanishes if Binstein’s empty-space equations hold, since then E°F K = IK = 0 by
(8-2). Hence
Tioc i FP+ P, B7Fr5 = 0, {8:8)
Similarly, since g5 tr x(KE , F, KF, E7) = 0 we have
Typo o F7+ B, EFSFT = (. (8-9)
Subtracting (8-9) from (8-8)
T, .. E7*°+P

rpve zovrd PIES =0
and the £ component of this equation gives the required symmetry

gjupva' = vap' (8-10)
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The vanishing of the trace T,,* when Einstein’s equations are obeyed follows from

adding (8-8) and (8:9), or from noting that
1,0’ = F5tr (B FPKE F,K) = 0.

nov

The other trace, of the form T4, = 1,,,* vanishes identically, due to the identity

E,KE* = 0. We note that the symmetries (8:5), (8:6), (8:7) and (8-10) are sufficient
to establish the complete symmetry of Bel’s tensor, whenever the Riemann tensor
satisfies the Einstein gravitational equations.

(¢} Divergence of Bel’s tensor. Finally, we may calculate an expression for the
divergence V,7'¢*7 of Bel’s tensor. We define the EF-number
J =, E*Fbr
from the tensor J ;. introduced in (7-7). We find that
VK = 1R, ;.. ,BrebFr
= 1B, ;. g BEFY = — ],
where the term in B ; vanishes due to the Bianchi identity. Similarly KV = .J, so that
V Terre = LV tr (ErF*KEfFK)
= gy tr (B*F"V  KE*F K + E*F'KErFoV K}
= g tr (JF*KE’F°K ~ JEPF K F?),

This quantity vanishes if Einstein’s equations are obeyed, since J = R, E+F5.

We calculate
K = {RE,,F, ,

— %R*uﬂuhEﬁﬂFAs_i_%RaﬂulEﬂﬂFA,
and similarly, KF» = }R*ME L F\ — SRefAE L F.
Hence F"KE,F,—E,F KF* = FR*PNE o Frgy— E s F.F))
—*R* AR g, F,
=2 + *RIDWAE?SQM
l _ R*pYMEyFaA*
+R,"E F,
So that, on multiplying by J = J,, E*Ftc the only terms with non-vanishing trace
that we obtain are 4(J*, R¥erev_ ] Rams),
so that we have established the result that
V,u, Tﬂpvo’ = é‘(R*amyJ*aﬂa - Ra,oCVJmm).

We note that on contraction over (vo), the duals on the Riemann tensor and on the
final index pair of J,,,, may be dropped, so that V, T#e¥, = 0, which is to be expected
since we have already shown that 7%, is identically zero. Contraction over (ov) gives

V, T4, = R*J, ;.
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